找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: Exacting
11#
發(fā)表于 2025-3-23 11:48:07 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:22 | 只看該作者
Graphs and Combinatorial Optimization: from Theory to Applications
13#
發(fā)表于 2025-3-23 18:36:36 | 只看該作者
The Chromatic Polynomial of a Digraph,ber of such colorings with . colors can be done by counting so-called Neumann-Lara-coflows (NL-coflows), which build a polynomial in .. We will present a representation of this polynomial using totally cyclic subdigraphs, which form a graded poset .. Furthermore we will decompose our NL-coflow polyn
14#
發(fā)表于 2025-3-24 01:02:50 | 只看該作者
On List ,-Coloring Convex Bipartite Graphs,with colors in {1, 2, …, .}. The problem is known to be NP-hard even for .?=?3 within the class of 3-regular planar bipartite graphs and for .?=?4 within the class of chordal bipartite graphs. In 2015 Huang, Johnson and Paulusma asked for the complexity of . 3. in the class of chordal bipartite grap
15#
發(fā)表于 2025-3-24 03:09:26 | 只看該作者
Total Chromatic Sum for Trees, provide infinite families of trees for which the minimum number of colors to achieve the total chromatic sum is equal to the total chromatic number. We construct infinite families of trees for which these numbers are not equal, disproving the conjecture from 2012.
16#
發(fā)表于 2025-3-24 08:32:31 | 只看該作者
17#
發(fā)表于 2025-3-24 12:32:11 | 只看該作者
18#
發(fā)表于 2025-3-24 15:27:33 | 只看該作者
19#
發(fā)表于 2025-3-24 22:49:57 | 只看該作者
20#
發(fā)表于 2025-3-24 23:49:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 16:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
天祝| 通城县| 金乡县| 汝城县| 棋牌| 迁安市| 太仓市| 开阳县| 温宿县| 留坝县| 汶上县| 台江县| 大石桥市| 天津市| 长寿区| 张家口市| 武定县| 桃源县| 石嘴山市| 石门县| 晋宁县| 阿拉善盟| 和政县| 突泉县| 石屏县| 巍山| 建德市| 綦江县| 同德县| 兴和县| 庆云县| 黄平县| 赫章县| 西乡县| 迭部县| 保山市| 杂多县| 平罗县| 汽车| 平陆县| 沈阳市|