找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: arouse
11#
發(fā)表于 2025-3-23 12:18:59 | 只看該作者
Embeddings of treelike graphs into 2-dimensional meshes,In the following we present embeddings of complete binary trees, pyramids and X-trees into 2-dimensional meshes. The presented embeddings achieve . expansion with congestion 2 for trees and congestion 6 for X-trees, and constant expansion ≤3 with congestion 3 for pyramids. The dilations are shown to be near optimal.
12#
發(fā)表于 2025-3-23 16:35:51 | 只看該作者
13#
發(fā)表于 2025-3-23 21:34:11 | 只看該作者
Finding minimally weighted subgraphs,ubgraph in an edge-weighted graph . on . nodes. We present an .(..)-algorithm for the weak subgraph problem. If the maximal degree of . is bounded, the algorithm above can be modified to an .(..)-algorithm for the induced subgraph problem.
14#
發(fā)表于 2025-3-24 01:59:00 | 只看該作者
15#
發(fā)表于 2025-3-24 04:21:22 | 只看該作者
16#
發(fā)表于 2025-3-24 07:57:19 | 只看該作者
17#
發(fā)表于 2025-3-24 13:54:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:45:53 | 只看該作者
19#
發(fā)表于 2025-3-24 19:24:59 | 只看該作者
Vertex-disjoint trees and boundary single-layer routing, consists of a set of . interconnecting the terminals belonging to the same (multi-terminal) net. An algorithm, unifying and generalizing previous BSLR algorithms, to solve an arbitrary instance of BSLR, is presented. Problems involving slidable terminals (i.e., when terminals can slide within a cer
20#
發(fā)表于 2025-3-25 01:14:14 | 只看該作者
Bounds on the quality of approximate solutions to the group Steiner problem, required vertices and Steiner vertices, GSP asks for a shortest connected subgraph, containing at least one vertex of each group. As the Steiner Problem is NP-hard, GSP is too, and we are interested in approximation algorithms. Efficient approximation algorithms have already been proposed, but noth
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 10:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
盐城市| 清镇市| 靖宇县| 建德市| 仙居县| 横峰县| 卢龙县| 洛隆县| 合肥市| 翁源县| 胶州市| 修武县| 吉隆县| 昌图县| 邹城市| 宁强县| 丰台区| 威海市| 嵊泗县| 南川市| 潞西市| 克山县| 宁强县| 长顺县| 镇巴县| 双柏县| 道真| 鸡东县| 正蓝旗| 新昌县| 滨州市| 麻城市| 广水市| 婺源县| 体育| 大洼县| 宜兰县| 兰西县| 东光县| 吉木萨尔县| 兴隆县|