找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 代表
31#
發(fā)表于 2025-3-26 21:24:18 | 只看該作者
32#
發(fā)表于 2025-3-27 01:58:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:12:10 | 只看該作者
34#
發(fā)表于 2025-3-27 09:25:55 | 只看該作者
https://doi.org/10.1007/978-3-476-04307-8hs over .(2). We propose here algebraic operations on graphs that characterize rank-width. For algorithmic purposes, it is important to represent graphs by balanced terms. We give a unique theorem that generalizes several “balancing theorems” for tree-width and clique-width. New results are obtained
35#
發(fā)表于 2025-3-27 14:03:14 | 只看該作者
https://doi.org/10.1007/978-3-658-40933-3(1.) the .-power graph of a tree has NLC-width at most .?+?2 and clique-width at most ., (2.) the .-leaf-power graph of a tree has NLC-width at most . and clique-width at most ., and (3.) the .-power graph of a graph of tree-width . has NLC-width at most (.?+?1).??1 and clique-width at most 2·(.?+?1
36#
發(fā)表于 2025-3-27 21:35:19 | 只看該作者
37#
發(fā)表于 2025-3-28 00:45:51 | 只看該作者
Markus Mangiapane,Roman P. Büchler., graphs that are both comparability and cocomparability graphs, it is known that minimal triangulations are interval graphs. We (negatively) answer the question whether every interval graph is a minimal triangulation of a permutation graph. We give a non-trivial characterisation of the class of in
38#
發(fā)表于 2025-3-28 03:24:24 | 只看該作者
39#
發(fā)表于 2025-3-28 06:29:00 | 只看該作者
40#
發(fā)表于 2025-3-28 11:08:43 | 只看該作者
https://doi.org/10.1007/978-3-662-08810-4planar drawings of planar graphs can be realized in .(..) area [9]. In this paper we consider families of DAGs that naturally arise in practice, like DAGs whose underlying graph is a tree (.), is a bipartite graph (.), or is an outerplanar graph (.). Concerning ., we show that optimal .(. log.) area
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲松县| 广宁县| 商都县| 乐都县| 赣州市| 晋州市| 北辰区| 三原县| 红原县| 济宁市| 信丰县| 穆棱市| 库车县| 成都市| 四平市| 武定县| 临澧县| 甘南县| 金山区| 波密县| 邵武市| 顺义区| 沁阳市| 乌苏市| 霞浦县| 区。| 横山县| 尤溪县| 德昌县| 探索| 林西县| 忻城县| 应用必备| 郁南县| 元江| 苏尼特左旗| 南和县| 福建省| 简阳市| 贵南县| 富平县|