找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 戰(zhàn)神
51#
發(fā)表于 2025-3-30 08:55:38 | 只看該作者
,Bounding Threshold Dimension: Realizing Graphic Boolean Functions as?the?AND of?Majority Gates,vectors of the cliques of .. Introduced in [Aggregation of inequalities in integer programming. Chvátal and Hammer, Annals of Discrete Mathematics, 1977], the . of a graph ., denoted by ., is the minimum number of threshold graphs whose intersection yields .. Given a graph . on . vertices, in line w
52#
發(fā)表于 2025-3-30 12:45:43 | 只看該作者
53#
發(fā)表于 2025-3-30 18:31:49 | 只看該作者
54#
發(fā)表于 2025-3-31 00:44:29 | 只看該作者
55#
發(fā)表于 2025-3-31 01:53:36 | 只看該作者
,Token Sliding on?Graphs of?Girth Five, there exists a constant . such that the problem becomes fixed-parameter tractable on graphs of girth at least .. We answer their question positively and prove that the problem is indeed fixed-parameter tractable on graphs of girth five or more, which establishes a full classification of the tractability of . based on the girth of the input graph.
56#
發(fā)表于 2025-3-31 07:37:08 | 只看該作者
57#
發(fā)表于 2025-3-31 12:25:48 | 只看該作者
58#
發(fā)表于 2025-3-31 15:13:58 | 只看該作者
Literaturwissenschaft / Kulturwissenschaftrs was in P. Recently, Lafond [SODA 2022] showed an XP algorithm when parameterized by ., while leaving the main question open. In this paper, we explore this question from the perspective of two alternative models of leaf powers, showing that both a linear and a star variant of leaf powers can be recognized in polynomial-time.
59#
發(fā)表于 2025-3-31 21:24:22 | 只看該作者
60#
發(fā)表于 2025-4-1 01:27:06 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 18:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南涧| 高邮市| 揭东县| 衡水市| 龙南县| 昌图县| 西藏| 大洼县| 新昌县| 邵东县| 凤台县| 安顺市| 鹰潭市| 乌兰浩特市| 泗洪县| 潮州市| 梁山县| 望奎县| 香港| 涿州市| 讷河市| 綦江县| 莱芜市| 乐山市| 永清县| 紫金县| 宁河县| 自贡市| 从江县| 吐鲁番市| 儋州市| 台湾省| 丘北县| 安平县| 鹿邑县| 会理县| 库车县| 北宁市| 辰溪县| 增城市| 扶沟县|