找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 掩飾
11#
發(fā)表于 2025-3-23 10:11:18 | 只看該作者
12#
發(fā)表于 2025-3-23 17:24:46 | 只看該作者
13#
發(fā)表于 2025-3-23 20:33:43 | 只看該作者
The Cinderella Game on Holes and Anti-holes,inderella can win the game..We determine the bucket numbers of all perfect graphs, and we also derive results on the bucket numbers of certain non-perfect graphs. In particular, we analyze the game on holes and (partially) on anti-holes for the cases where Cinderella sticks to a simple greedy strategy.
14#
發(fā)表于 2025-3-24 01:07:47 | 只看該作者
15#
發(fā)表于 2025-3-24 02:41:07 | 只看該作者
https://doi.org/10.1007/978-3-642-81506-5circular arc graphs, circular .-trapezoid graphs, convex graphs, Dilworth . graphs, .-polygon graphs and complements of .-degenerate graphs. Combined with results in [1,5], this implies that a large class of vertex subset and vertex partitioning problems can be solved in polynomial time on these graph classes.
16#
發(fā)表于 2025-3-24 10:08:03 | 只看該作者
17#
發(fā)表于 2025-3-24 14:15:37 | 只看該作者
Moderne Verfahren der Kryptographiewith no induced .. We also show that ... is fixed parameter tractable in .?+?. on graphs with no induced ..?+?.., and that .-. restricted to such graphs allows a polynomial kernel when parameterized by .. Finally, we show that ... is fixed parameter tractable in . for graphs with no induced ..?+?...
18#
發(fā)表于 2025-3-24 16:33:14 | 只看該作者
https://doi.org/10.1007/978-3-322-84306-7overy. In these inverse problems, the goal is to generate chemical compounds having desired structural properties, as there is a strong correlation between structural properties, such as the Wiener index, which is closely connected to the considered problem, and biological activity.
19#
發(fā)表于 2025-3-24 19:51:16 | 只看該作者
20#
發(fā)表于 2025-3-24 23:46:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 13:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
电白县| 炉霍县| 嘉善县| 和林格尔县| 进贤县| 建湖县| 苍南县| 西城区| 子长县| 广东省| 东乌珠穆沁旗| 平潭县| 库尔勒市| 池州市| 太保市| 上饶县| SHOW| 屯昌县| 马边| 新干县| 宁蒗| 义马市| 班戈县| 海林市| 平安县| 衢州市| 重庆市| 阿巴嘎旗| 泾阳县| 衢州市| 朝阳县| 嘉义县| 临高县| 涿州市| 黄梅县| 内江市| 札达县| 靖州| 额尔古纳市| 淮滨县| 南宁市|