找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 櫥柜
51#
發(fā)表于 2025-3-30 10:59:08 | 只看該作者
52#
發(fā)表于 2025-3-30 14:44:58 | 只看該作者
https://doi.org/10.1007/978-3-322-90466-9at a . of a perfect strip-composed graph, with the basic graphs belonging to a class ., can be found in polynomial time, provided that the . problem can be solved on . in polynomial time. We also design a new, more efficient, combinatorial algorithm for the . problem on strip-composed claw-free perfect graphs.
53#
發(fā)表于 2025-3-30 20:28:03 | 只看該作者
Moderne Organisationstheorien 2 graph classes for all but finitely many cases, whenever neither of the forbidden graphs is a clique, a pan, or a complement of these graphs. Further reducing the remaining open cases we show that (with respect to graph isomorphism) forbidding a pan is equivalent to forbidding a clique of size three.
54#
發(fā)表于 2025-3-30 22:59:07 | 只看該作者
55#
發(fā)表于 2025-3-31 01:11:47 | 只看該作者
56#
發(fā)表于 2025-3-31 07:09:29 | 只看該作者
Constructing Resilient Structures in Graphs: Rigid vs. Competitive Fault-Tolerancet-tolerant, namely, reinforcing it so that following a failure event, its surviving part continues to satisfy the requirements. The talk will distinguish between two types of fault-tolerance, termed rigid and competitive fault tolerance, compare these two notions, and illustrate them on a number of examples.
57#
發(fā)表于 2025-3-31 11:44:40 | 只看該作者
Minimum Weighted Clique Cover on Strip-Composed Perfect Graphsat a . of a perfect strip-composed graph, with the basic graphs belonging to a class ., can be found in polynomial time, provided that the . problem can be solved on . in polynomial time. We also design a new, more efficient, combinatorial algorithm for the . problem on strip-composed claw-free perfect graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大厂| 鄂尔多斯市| 长垣县| 榆树市| 沛县| 西吉县| 平舆县| 泾源县| 夹江县| 蒲城县| 德庆县| 清原| 红安县| 雷波县| 卢湾区| 新蔡县| 安阳市| 镇平县| 乌兰县| 金川县| 甘德县| 建水县| 勐海县| 南汇区| 墨玉县| 陇川县| 松溪县| 临猗县| 贡觉县| 雷州市| 鹤庆县| 新巴尔虎左旗| 全南县| 大安市| 洱源县| 淮北市| 旬阳县| 安多县| 兰坪| 双桥区| 宁波市|