找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: DEIFY
11#
發(fā)表于 2025-3-23 13:30:39 | 只看該作者
On Minimum Connecting Transition Sets in Graphs,cutively in a walk in the graph. In this paper, we look for the smallest set of transitions needed to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
12#
發(fā)表于 2025-3-23 14:26:44 | 只看該作者
Recognizing Hyperelliptic Graphs in Polynomial Time,aph algorithms and number theory. We consider so-called . (multigraphs of gonality 2) and provide a safe and complete set of reduction rules for such multigraphs, showing that we can recognize hyperelliptic graphs in time ., where . is the number of vertices and . the number of edges of the multigra
13#
發(fā)表于 2025-3-23 20:51:14 | 只看該作者
14#
發(fā)表于 2025-3-24 01:27:36 | 只看該作者
,Optimality Program in Segment and?String Graphs,is very likely to be asymptotically best on general graphs. Intrigued by an algorithm packing curves in . by Fox and Pach [SODA’11], we investigate which problems have subexponential algorithms on the intersection graphs of curves (string graphs) or segments (segment intersection graphs) and which p
15#
發(fā)表于 2025-3-24 05:15:46 | 只看該作者
Anagram-Free Chromatic Number Is Not Pathwidth-Bounded,s note, we show that there are planar graphs of pathwidth 3 with arbitrarily large anagram-free chromatic number. More specifically, we describe 2.-vertex planar graphs of pathwidth 3 with anagram-free chromatic number .. We also describe . vertex graphs with pathwidth . having anagram-free chromati
16#
發(fā)表于 2025-3-24 08:34:40 | 只看該作者
17#
發(fā)表于 2025-3-24 14:05:10 | 只看該作者
18#
發(fā)表于 2025-3-24 15:06:30 | 只看該作者
19#
發(fā)表于 2025-3-24 22:57:36 | 只看該作者
20#
發(fā)表于 2025-3-25 00:43:23 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 02:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
阳山县| 两当县| 驻马店市| 班戈县| 绥芬河市| 东平县| 图片| 康乐县| 麻江县| 柘城县| 宜宾县| 新余市| 沧源| 九江市| 昭苏县| 来宾市| 镇平县| 西吉县| 莒南县| 江达县| 黔东| 乌拉特中旗| 白玉县| 彭州市| 徐州市| 吉林市| 定安县| 大连市| 繁昌县| 三江| 双牌县| 宁海县| 合山市| 铜梁县| 阿合奇县| 天气| 浦城县| 专栏| 绥阳县| 兴隆县| 邳州市|