找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 25346|回復(fù): 62
樓主
發(fā)表于 2025-3-21 16:09:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Graph-Based Representations in Pattern Recognition
編輯Xiaoyi Jiang,Miquel Ferrer,Andrea Torsello
視頻videohttp://file.papertrans.cn/389/388002/388002.mp4
叢書名稱Lecture Notes in Computer Science
圖書封面Titlebook: ;
出版日期Conference proceedings 2011
版次1
doihttps://doi.org/10.1007/978-3-642-20844-7
isbn_softcover978-3-642-20843-0
isbn_ebook978-3-642-20844-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
issn_series 0302-9743
The information of publication is updating

書目名稱Graph-Based Representations in Pattern Recognition影響因子(影響力)




書目名稱Graph-Based Representations in Pattern Recognition影響因子(影響力)學(xué)科排名




書目名稱Graph-Based Representations in Pattern Recognition網(wǎng)絡(luò)公開度




書目名稱Graph-Based Representations in Pattern Recognition網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Graph-Based Representations in Pattern Recognition被引頻次




書目名稱Graph-Based Representations in Pattern Recognition被引頻次學(xué)科排名




書目名稱Graph-Based Representations in Pattern Recognition年度引用




書目名稱Graph-Based Representations in Pattern Recognition年度引用學(xué)科排名




書目名稱Graph-Based Representations in Pattern Recognition讀者反饋




書目名稱Graph-Based Representations in Pattern Recognition讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:56:21 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:49:14 | 只看該作者
地板
發(fā)表于 2025-3-22 06:39:35 | 只看該作者
https://doi.org/10.1057/9781137368683This contribution extends generalized LVQ, generalized relevance LVQ, and robust soft LVQ to the graph domain. The proposed approaches are based on the basic learning graph quantization (.) algorithm using the orbifold framework. Experiments on three data sets show that the proposed approaches outperform . and ..
5#
發(fā)表于 2025-3-22 11:57:10 | 只看該作者
Generalized Learning Graph QuantizationThis contribution extends generalized LVQ, generalized relevance LVQ, and robust soft LVQ to the graph domain. The proposed approaches are based on the basic learning graph quantization (.) algorithm using the orbifold framework. Experiments on three data sets show that the proposed approaches outperform . and ..
6#
發(fā)表于 2025-3-22 15:54:00 | 只看該作者
7#
發(fā)表于 2025-3-22 17:51:53 | 只看該作者
8#
發(fā)表于 2025-3-22 23:31:25 | 只看該作者
Dimensionality Reduction for Graph of Words Embeddinge attributes of the graph. While it shows good properties in classification problems, it suffers from high dimensionality and sparsity. These two issues are addressed in this article. Two well-known techniques for dimensionality reduction, kernel principal component analysis (kPCA) and independent c
9#
發(fā)表于 2025-3-23 05:11:53 | 只看該作者
10#
發(fā)表于 2025-3-23 06:54:10 | 只看該作者
Learning Generative Graph Prototypes Using Simplified von Neumann Entropyerms of learning a generative supergraph model from which the new samples can be obtained by an appropriate sampling mechanism. We commence by constructing a probability distribution for the occurrence of nodes and edges over the supergraph. We encode the complexity of the supergraph using the von-N
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 00:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
海丰县| 平乡县| 宜宾县| 本溪| 延边| 义马市| 陆河县| 军事| 三门峡市| 天镇县| 舞阳县| 芮城县| 申扎县| 旌德县| 桐柏县| 小金县| 孙吴县| 施秉县| 和林格尔县| 穆棱市| 崇州市| 抚松县| 上饶市| 大渡口区| 罗江县| 巴彦淖尔市| 罗定市| 女性| 容城县| 镇江市| 邵武市| 清新县| 上林县| 弥渡县| 观塘区| 南开区| 甘南县| 普洱| 噶尔县| 临潭县| 富民县|