找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: deduce
31#
發(fā)表于 2025-3-26 23:52:22 | 只看該作者
https://doi.org/10.1007/978-3-030-88892-3nt quality. We use GIS data to extract the structure of each river and link this structure to 81 river water stations (that measure both water temperature and discharge). Since the water temperature of a river is strongly dependent on the air temperature, we also include 44 weather stations (which m
32#
發(fā)表于 2025-3-27 02:34:11 | 只看該作者
Quadratic Kernel Learning for?Interpolation Kernel Machine Based Graph Classificationhigh-performance ensemble techniques. Interpolation kernel machines belong to the class of interpolating classifiers and do generalize well. They have been demonstrated to be a good alternative to support vector machine for graph classification. In this work we further improve their performance by c
33#
發(fā)表于 2025-3-27 05:58:37 | 只看該作者
34#
發(fā)表于 2025-3-27 10:48:17 | 只看該作者
Graph-Based vs. Vector-Based Classification: A Fair Comparison and applications is crucial. In this paper, we conduct a comprehensive assessment of three commonly used graph-based classifiers across 24 graph datasets (we employ classifiers based on graph matchings, graph kernels, and graph neural networks). Our goal is to find out what primarily affects the pe
35#
發(fā)表于 2025-3-27 16:12:52 | 只看該作者
A Practical Algorithm for?Max-Norm Optimal Binary Labeling of?Graphslski (2020). This method finds, in quadratic time with respect to graph size, a labeling that globally minimizes an objective function based on the .-norm. The method enables global optimization for a novel class of optimization problems, with high relevance in application areas such as image proces
36#
發(fā)表于 2025-3-27 19:25:04 | 只看該作者
37#
發(fā)表于 2025-3-27 23:28:41 | 只看該作者
38#
發(fā)表于 2025-3-28 05:04:22 | 只看該作者
39#
發(fā)表于 2025-3-28 09:22:32 | 只看該作者
40#
發(fā)表于 2025-3-28 11:11:13 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 22:07
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
华池县| 宜良县| 西昌市| 黎川县| 保靖县| 麻栗坡县| 共和县| 客服| 曲松县| 余庆县| 克什克腾旗| 锦州市| 石楼县| 富裕县| 武清区| 江西省| 新龙县| 珠海市| 本溪市| 吕梁市| 垣曲县| 奉化市| 闸北区| 大城县| 阳谷县| 瓮安县| 饶阳县| 民权县| 翁牛特旗| 缙云县| 融水| 莎车县| 古蔺县| 当雄县| 山阳县| 师宗县| 宁城县| 印江| 格尔木市| 邯郸市| 镇平县|