找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 不服從
21#
發(fā)表于 2025-3-25 05:29:24 | 只看該作者
https://doi.org/10.1007/978-3-658-15658-9 For .?=?1, this gives the usual notion of matching in graphs, and for general .?≥?1, distance-. matchings were called . by Stockmeyer and Vazirani. The special case .?=?2 has been studied under the names . (i.e., a matching which forms an induced subgraph in .) by Cameron and . by Golumbic and Lask
22#
發(fā)表于 2025-3-25 10:46:03 | 只看該作者
https://doi.org/10.1007/978-3-662-69201-1write .?∈?Ψ(.), if . is a maximum stable set of the subgraph induced by .?∪?.(.), where .(.) is the neighborhood of .,[11]. Nemhauser and Trotter Jr. proved that any .?∈?Ψ(.) is a subset of a maximum stable set of .,[19]..In this paper we demonstrate that if .?∈?Ψ(.), the subgraph . induced by .?∪?.
23#
發(fā)表于 2025-3-25 14:01:11 | 只看該作者
24#
發(fā)表于 2025-3-25 19:05:51 | 只看該作者
https://doi.org/10.1007/978-3-658-01900-6status of the problem is not known if the input is restricted to graphs with no cycles of length 4. We conjecture that the problem is polynomial if the input graph does not contain cycles of length 4 and 6, and prove several theorems supporting our conjecture.
25#
發(fā)表于 2025-3-25 22:05:14 | 只看該作者
26#
發(fā)表于 2025-3-26 02:25:31 | 只看該作者
27#
發(fā)表于 2025-3-26 05:27:49 | 只看該作者
28#
發(fā)表于 2025-3-26 10:51:53 | 只看該作者
https://doi.org/10.1007/978-3-658-40421-5w some known results and prove new ones. In particular, we consider a family of transformations of an edge-coloured multigraph . into an ordinary graph that allow us to check the existence of PC cycles and PC (.,.)-paths in . and, if they exist, to find shortest ones among them. We raise a problem o
29#
發(fā)表于 2025-3-26 14:44:05 | 只看該作者
30#
發(fā)表于 2025-3-26 18:28:44 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 12:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
三原县| 广汉市| 罗江县| 衡山县| 吕梁市| 海兴县| 遵义县| 喀什市| 星子县| 潍坊市| 兴文县| 冕宁县| 银川市| 武陟县| 肃宁县| 名山县| 阜城县| 文登市| 五常市| 屯留县| 巫山县| 长丰县| 锦州市| 石家庄市| 高陵县| 招远市| 赣榆县| 屏东市| 蒲城县| 平度市| 嫩江县| 苗栗县| 黔西县| 河曲县| 延长县| 齐齐哈尔市| 桑日县| 南丰县| 贺兰县| 阿克苏市| 巴林右旗|