找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
查看: 26285|回復(fù): 61
樓主
發(fā)表于 2025-3-21 16:14:39 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Graph Theory in Paris
編輯Adrian Bondy,Jean Fonlupt,Jorge L. Ramírez Alfonsí
視頻videohttp://file.papertrans.cn/388/387957/387957.mp4
叢書(shū)名稱Trends in Mathematics
圖書(shū)封面Titlebook: ;
出版日期Conference proceedings 2007
版次1
doihttps://doi.org/10.1007/978-3-7643-7400-6
isbn_ebook978-3-7643-7400-6Series ISSN 2297-0215 Series E-ISSN 2297-024X
issn_series 2297-0215
The information of publication is updating

書(shū)目名稱Graph Theory in Paris影響因子(影響力)




書(shū)目名稱Graph Theory in Paris影響因子(影響力)學(xué)科排名




書(shū)目名稱Graph Theory in Paris網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Graph Theory in Paris網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Graph Theory in Paris被引頻次




書(shū)目名稱Graph Theory in Paris被引頻次學(xué)科排名




書(shū)目名稱Graph Theory in Paris年度引用




書(shū)目名稱Graph Theory in Paris年度引用學(xué)科排名




書(shū)目名稱Graph Theory in Paris讀者反饋




書(shū)目名稱Graph Theory in Paris讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:02 | 只看該作者
Ralf Weinek?tter,Hermann GerickeWe consider simple connected graphs for which there is a path of length at least . between every pair of distinct vertices. We wish to show that in these graphs the cycle space over ?. is generated by the cycles of length at least ., where . = 1 for 3 ≤ . ≤ 6, . = 6/7 for . = 7, . ≥ 1/2 for . ≥ 8 and . ≤ 3/4 +.(1) for large k.
板凳
發(fā)表于 2025-3-22 03:43:11 | 只看該作者
https://doi.org/10.1057/9780230212800We give an O(.log log .+..)-time algorithm to recognize perfect circular-arc graphs.
地板
發(fā)表于 2025-3-22 07:36:45 | 只看該作者
https://doi.org/10.1007/978-3-663-10811-5In this paper we consider the question of determining the maximum number of edges in a Hamiltonian graph of order . that contains no 2-factor with more than one cycle, that is, 2-factor Hamiltonian graphs. We obtain exact results for both bipartite graphs, and general graphs, and construct extremal graphs in each case.
5#
發(fā)表于 2025-3-22 10:18:36 | 只看該作者
Missile Defences and Asian-Pacific SecurityIn this note we provide a Henneberg-type constructive characterization theorem of [.]-sparse graphs, that is, the graphs for which the number of induced edges in any subset . of nodes is at most .|.| ? .. We consider the case 0 ≤ l ≤ ..
6#
發(fā)表于 2025-3-22 13:53:15 | 只看該作者
,Claude Berge — Sculptor of Graph Theory,Claude Berge fashioned graph theory into an integrated and significant part of modern mathematics. As was clear to all who met him, he was a multifaceted person, whose achievements, however varied they might seem at first glance, were interconnected in many ways.
7#
發(fā)表于 2025-3-22 19:25:46 | 只看該作者
,-path-connectivity and ,-generation: an Upper Bound on ,,We consider simple connected graphs for which there is a path of length at least . between every pair of distinct vertices. We wish to show that in these graphs the cycle space over ?. is generated by the cycles of length at least ., where . = 1 for 3 ≤ . ≤ 6, . = 6/7 for . = 7, . ≥ 1/2 for . ≥ 8 and . ≤ 3/4 +.(1) for large k.
8#
發(fā)表于 2025-3-22 21:13:08 | 只看該作者
9#
發(fā)表于 2025-3-23 04:10:33 | 只看該作者
10#
發(fā)表于 2025-3-23 05:33:51 | 只看該作者
A Note on [,]-sparse Graphs,In this note we provide a Henneberg-type constructive characterization theorem of [.]-sparse graphs, that is, the graphs for which the number of induced edges in any subset . of nodes is at most .|.| ? .. We consider the case 0 ≤ l ≤ ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 13:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太原市| 百色市| 沙河市| 巴里| 临潭县| 错那县| 东安县| 淮阳县| 黑河市| 绥芬河市| 大同市| 靖安县| 满洲里市| 原平市| 双江| 元朗区| 桃园市| 色达县| 宜城市| 栾城县| 鹿邑县| 美姑县| 涿鹿县| 祁阳县| 左权县| 清流县| 尼勒克县| 望江县| 和硕县| 平遥县| 临江市| 大邑县| 大同市| 科技| 金溪县| 沐川县| 吉木萨尔县| 婺源县| 名山县| 子洲县| 离岛区|