找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 連結(jié)
21#
發(fā)表于 2025-3-25 06:38:38 | 只看該作者
22#
發(fā)表于 2025-3-25 08:45:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:17:04 | 只看該作者
24#
發(fā)表于 2025-3-25 19:19:23 | 只看該作者
https://doi.org/10.1007/978-3-211-71585-7s, and finite locally primitive graphs. The nature of the group theoretic techniques used range from elementary ones to some involving the finite simple group classification. In particular the theorem of O’Nan and Scott for finite primitive permutation groups, and a generalisation of it for finite quasiprimitive permutation groups is discussed.
25#
發(fā)表于 2025-3-25 21:25:07 | 只看該作者
Finite transitive permutation groups and finite vertex-transitive graphs,s, and finite locally primitive graphs. The nature of the group theoretic techniques used range from elementary ones to some involving the finite simple group classification. In particular the theorem of O’Nan and Scott for finite primitive permutation groups, and a generalisation of it for finite quasiprimitive permutation groups is discussed.
26#
發(fā)表于 2025-3-26 00:50:13 | 只看該作者
27#
發(fā)表于 2025-3-26 08:16:12 | 只看該作者
28#
發(fā)表于 2025-3-26 09:33:32 | 只看該作者
https://doi.org/10.1057/9780333985168oint work by P. Niemeyer and the author on fiber-equivalence, which is a refinement of end-equivalence. Section 6: the classification of locally finite, edge-transitive planar graphs by J.E. Graver and the author in terms of the number of ends, their Petrie walks, and the local behavior of their automorphism groups.
29#
發(fā)表于 2025-3-26 16:34:46 | 只看該作者
30#
發(fā)表于 2025-3-26 18:42:48 | 只看該作者
https://doi.org/10.1007/978-981-16-9621-3 graph. Following this, we survey some basic material from permutation groups and model theory. Then we discuss various constructions and characterisations of infinite highly symmetric graphs, and connections with several topics in finite combinatorics, including random graphs, enumeration, and grap
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
建水县| 贞丰县| 荥阳市| 奉节县| 阳泉市| 齐齐哈尔市| 尉氏县| 吴桥县| 深水埗区| 永嘉县| 达拉特旗| 赤城县| 库伦旗| 祁阳县| 秭归县| 伽师县| 新郑市| 铁岭县| 蛟河市| 福安市| 临桂县| 易门县| 邵武市| 满城县| 耿马| 东乌| 宁河县| 镇赉县| 贵阳市| 拉孜县| 瑞丽市| 安塞县| 铜梁县| 保康县| 荔浦县| 江阴市| 马边| 扎赉特旗| 大洼县| 德州市| 高邮市|