找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 減輕
31#
發(fā)表于 2025-3-26 22:28:26 | 只看該作者
A Multi-graph Spectral Framework for Mining Multi-source Anomalies,used in a variety of domains, such as intrusion detection, fraud detection, and health monitoring. Today’s information explosion generates significant challenges for anomaly detection when there exist many large, distributed data repositories consisting of a variety of data sources and formats.
32#
發(fā)表于 2025-3-27 01:46:14 | 只看該作者
Graph Embedding for Speaker Recognition,compassing multiple applications. At the core is the problem of speaker comparison—given two speech recordings (utterances), produce a score which measures speaker similarity. Using speaker comparison, other applications can be implemented—speaker clustering (grouping similar speakers in a corpus),
33#
發(fā)表于 2025-3-27 07:05:54 | 只看該作者
34#
發(fā)表于 2025-3-27 11:14:52 | 只看該作者
35#
發(fā)表于 2025-3-27 17:17:59 | 只看該作者
36#
發(fā)表于 2025-3-27 19:22:13 | 只看該作者
Iris Bednarz-Braun,Ulrike He?-Meiningused in a variety of domains, such as intrusion detection, fraud detection, and health monitoring. Today’s information explosion generates significant challenges for anomaly detection when there exist many large, distributed data repositories consisting of a variety of data sources and formats.
37#
發(fā)表于 2025-3-27 23:48:03 | 只看該作者
Improving Classifications Through Graph Embeddings,ng [5], medical diagnosis [15], demographic research [13], etc. Unsupervised classification using K-Means generally clusters data based on (1) distance-based attributes of the dataset [4, 16, 17, 23] or (2) combinatorial properties of a weighted graph representation of the dataset [8].
38#
發(fā)表于 2025-3-28 05:22:07 | 只看該作者
Learning with ,,-Graphfor High Dimensional Data Analysis,ce learning, and semi-supervised learning. Data clustering often starts with a pairwise similarity graph and then translates into a graph partition problem [19], and thus the quality of the graph essentially determines the clustering quality.
39#
發(fā)表于 2025-3-28 09:20:01 | 只看該作者
40#
發(fā)表于 2025-3-28 10:34:00 | 只看該作者
A Multi-graph Spectral Framework for Mining Multi-source Anomalies,used in a variety of domains, such as intrusion detection, fraud detection, and health monitoring. Today’s information explosion generates significant challenges for anomaly detection when there exist many large, distributed data repositories consisting of a variety of data sources and formats.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 12:33
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
顺昌县| 麻栗坡县| 广河县| 昆山市| 肇州县| 衡东县| 塔河县| 新平| 玛曲县| 蒙山县| 当阳市| 奉节县| 扬中市| 光山县| 容城县| 铜山县| 天祝| 当雄县| 商丘市| 自治县| 兴宁市| 应城市| 德昌县| 平邑县| 无棣县| 武冈市| 临湘市| 缙云县| 宿松县| 巴东县| 澎湖县| 新乡市| 平利县| 德惠市| 博乐市| 光山县| 永寿县| 商河县| 昌黎县| 江陵县| 双江|