找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
41#
發(fā)表于 2025-3-28 17:46:53 | 只看該作者
Rectilinear Planarity of?Partial 2-Trees are based on an extensive study and a deeper understanding of the notion of orthogonal spirality, introduced in 1998 to describe how much an orthogonal drawing of a subgraph is rolled-up in an orthogonal drawing of the graph.
42#
發(fā)表于 2025-3-28 19:38:49 | 只看該作者
-Orientations with?Few Transitive Edgesr of transitive edges with respect to unconstrained .-orientations computed via classical .-numbering algorithms. Moreover, focusing on popular graph drawing algorithms that apply an .-orientation as a preliminary step, we show that reducing the number of transitive edges leads to drawings that are much more compact.
43#
發(fā)表于 2025-3-29 01:34:23 | 只看該作者
Migrant Domestic Workers in the Middle Eastss Gabriel drawing. The characterization leads to a linear time testing algorithm. We also show that when at least one of the graphs in the pair . is complete .-partite with . and all partition sets in the two graphs have size greater than one, the pair does not admit a mutual witness Gabriel drawing.
44#
發(fā)表于 2025-3-29 03:26:18 | 只看該作者
45#
發(fā)表于 2025-3-29 09:04:13 | 只看該作者
https://doi.org/10.1057/9781137308634. A PCOD is . if each edge is drawn with monotonically increasing y-coordinates and . if no edge starts with decreasing y-coordinates. We study the split complexity of PCODs and (quasi-)upward PCODs for various classes of graphs.
46#
發(fā)表于 2025-3-29 13:52:18 | 只看該作者
Mutual Witness Gabriel Drawings of?Complete Bipartite Graphsss Gabriel drawing. The characterization leads to a linear time testing algorithm. We also show that when at least one of the graphs in the pair . is complete .-partite with . and all partition sets in the two graphs have size greater than one, the pair does not admit a mutual witness Gabriel drawing.
47#
發(fā)表于 2025-3-29 16:07:40 | 只看該作者
48#
發(fā)表于 2025-3-29 20:55:15 | 只看該作者
Planar Confluent Orthogonal Drawings of?4-Modal Digraphs. A PCOD is . if each edge is drawn with monotonically increasing y-coordinates and . if no edge starts with decreasing y-coordinates. We study the split complexity of PCODs and (quasi-)upward PCODs for various classes of graphs.
49#
發(fā)表于 2025-3-30 03:22:48 | 只看該作者
50#
發(fā)表于 2025-3-30 07:13:30 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 19:58
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
城口县| 启东市| 南通市| 临颍县| 衡水市| 道孚县| 博湖县| 略阳县| 香格里拉县| 深州市| 基隆市| 乌鲁木齐县| 兰考县| 浙江省| 霍林郭勒市| 许昌县| 建宁县| 阜南县| 永年县| 长兴县| 古田县| 嘉峪关市| 金昌市| 衡阳市| 昔阳县| 涪陵区| 财经| 武陟县| 蒲城县| 建湖县| 华容县| 深泽县| 江门市| 海淀区| 分宜县| 会理县| 临汾市| 平舆县| 武威市| 五大连池市| 高阳县|