找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: charity
21#
發(fā)表于 2025-3-25 05:36:30 | 只看該作者
Upward Planar Morphstween them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of .(1) morphing steps if . is a reduced planar .-graph, .(.) morphing steps if . is a planar .-graph, .(.) morphing steps if . is a reduced upward planar graph, and . morphing
22#
發(fā)表于 2025-3-25 08:07:18 | 只看該作者
Visualizing the Template of a Chaotic Attractorractors bounded by a genus–1 torus described by a linking matrix. This article introduces a novel and unique tool to validate a linking matrix, to optimize the compactness of the corresponding template and to draw this template. The article provides a detailed description of the different validation
23#
發(fā)表于 2025-3-25 13:00:23 | 只看該作者
24#
發(fā)表于 2025-3-25 15:51:47 | 只看該作者
Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bendsnar, and NIC-planar drawing, respectively. A drawing of a graph is . if every edge is crossed at most once. A 1-planar drawing is . if no two pairs of crossing edges share a vertex. A 1-planar drawing is . if no two pairs of crossing edges share two vertices..We study the relations of these beyond-p
25#
發(fā)表于 2025-3-25 20:07:24 | 只看該作者
26#
發(fā)表于 2025-3-26 01:05:49 | 只看該作者
27#
發(fā)表于 2025-3-26 07:44:16 | 只看該作者
28#
發(fā)表于 2025-3-26 10:23:11 | 只看該作者
Short Plane Supports for Spatial Hypergraphsthat investigate the effect of requiring planarity and acyclicity on the resulting support length. Further, we evaluate the performance and trade-offs between solution quality and speed of several heuristics relative to each other and compared to optimal solutions.
29#
發(fā)表于 2025-3-26 14:41:04 | 只看該作者
30#
發(fā)表于 2025-3-26 18:02:51 | 只看該作者
https://doi.org/10.1007/978-3-7091-7018-2 to Randerath et al.?[.] is equivalent to the strong Hanani-Tutte theorem for level planarity?[.]. Further, we show that this relationship carries over to radial level planarity, which yields a novel polynomial-time algorithm for testing radial level planarity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
汉川市| 泗水县| 布尔津县| 德庆县| 大英县| 桦南县| 大厂| 加查县| 奉贤区| 山阳县| 平邑县| 古交市| 嘉峪关市| 新营市| 肥西县| 奉贤区| 成都市| 虹口区| 祁东县| 博客| 本溪市| 内江市| 黄石市| 开平市| 甘南县| 安丘市| 泸水县| 和林格尔县| 长宁县| 响水县| 利津县| 祁东县| 启东市| 济阳县| 赤壁市| 县级市| 安图县| 鄂尔多斯市| 上高县| 神农架林区| 新泰市|