找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: FARCE
31#
發(fā)表于 2025-3-27 00:17:36 | 只看該作者
Michael R. Hammock,J. Wilson Mixonanar drawing of . exists such that each edge is monotone in the .-direction and, for any .,.?∈?. with .(.)?
32#
發(fā)表于 2025-3-27 02:20:11 | 只看該作者
Microeconomic Theory for the Social Sciencesarity is preserved at all times. Each step of the morph moves each vertex at constant speed along a straight line. Although the existence of a morph between any two drawings was established several decades ago, only recently it has been proved that a polynomial number of steps suffices to morph any
33#
發(fā)表于 2025-3-27 08:28:48 | 只看該作者
34#
發(fā)表于 2025-3-27 12:50:56 | 只看該作者
35#
發(fā)表于 2025-3-27 16:36:45 | 只看該作者
36#
發(fā)表于 2025-3-27 17:49:12 | 只看該作者
https://doi.org/10.1007/978-3-319-47587-5s in a .-quasi-planar graph on . vertices is .(.). Fox and Pach showed that every .-quasi-planar graph with . vertices and no pair of edges intersecting in more than .(1) points has at most .(log.). edges. We improve this upper bound to ., where .(.) denotes the inverse Ackermann function, and . dep
37#
發(fā)表于 2025-3-28 00:23:57 | 只看該作者
Alexander E. Popugaev,Rainer Wanschaphs generalize outerplanar graphs, which can be recognized in linear time and specialize 1-planar graphs, whose recognition is .-hard..Our main result is a linear-time algorithm that first tests whether a graph?. is ., and then computes an embedding. Moreover, the algorithm can augment . to a maxim
38#
發(fā)表于 2025-3-28 05:11:12 | 只看該作者
39#
發(fā)表于 2025-3-28 10:02:19 | 只看該作者
Timing Methods and Programmable Timers,ntation extension problem for circle graphs, where the input consists of a graph . and a partial representation . giving some pre-drawn chords that represent an induced subgraph of .. The question is whether one can extend . to a representation . of the entire ., i.e., whether one can draw the remai
40#
發(fā)表于 2025-3-28 11:58:50 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
绍兴市| 武平县| 兴国县| 新泰市| 福泉市| 焉耆| 上林县| 通州市| 丹凤县| 黔西县| 上杭县| 陕西省| 饶平县| 榆社县| 高邮市| 台州市| 南充市| 龙口市| 镇巴县| 白山市| 宁南县| 行唐县| 卢湾区| 都江堰市| 怀安县| 蓝山县| 镇宁| 河北省| 湖州市| 泰安市| 辉县市| 南充市| 桃源县| 师宗县| 张北县| 贵德县| 游戏| 南投县| 中阳县| 屯留县| 芜湖市|