找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 萬靈藥
61#
發(fā)表于 2025-4-1 03:32:35 | 只看該作者
62#
發(fā)表于 2025-4-1 08:51:31 | 只看該作者
Microbiome in Idiopathic Pulmonary Fibrosis, it take to untangle ., i.e., to turn it into a simple polygon, if in each step we can arbitrarily relocate one of its vertices. It is shown that in some cases one has to move all but at most .((. log .).) vertices. On the other hand, every polygon . can be untangled in at most . steps. Some related questions are also considered.
63#
發(fā)表于 2025-4-1 13:50:15 | 只看該作者
64#
發(fā)表于 2025-4-1 15:55:27 | 只看該作者
Fast Compaction for Orthogonal Drawings with Vertices of Prescribed Sizeitical constraint for manypractical applications like UML. The algorithm provides a drastic improvement on previous approaches. It has linear worst case running time and experiments show that it performs veryw ell in practice.
65#
發(fā)表于 2025-4-1 18:38:14 | 只看該作者
Untangling a Polygon it take to untangle ., i.e., to turn it into a simple polygon, if in each step we can arbitrarily relocate one of its vertices. It is shown that in some cases one has to move all but at most .((. log .).) vertices. On the other hand, every polygon . can be untangled in at most . steps. Some related questions are also considered.
66#
發(fā)表于 2025-4-2 00:01:16 | 只看該作者
https://doi.org/10.1007/978-981-13-8495-0wires is equivalent to finding the drawing in which the edges are drawn as thick as possible. To the best of our knowledge this is the first algorithm that finds the maximal distance between any two wires and allows for wires of variable thickness. The previous best known result for the correspondin
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
英超| 西畴县| 麦盖提县| 安福县| 天门市| 栖霞市| 太谷县| 南充市| 册亨县| 保靖县| 文安县| 沙雅县| 漳州市| 修文县| 大宁县| 老河口市| 深州市| 德化县| 巴里| 峨眉山市| 阿坝县| 军事| 衢州市| 正蓝旗| 东乡县| 麻栗坡县| 梨树县| 虹口区| 昌邑市| 会同县| 叶城县| 城市| 灯塔市| 昆山市| 双辽市| 昌黎县| 滨州市| 增城市| 夏津县| 和林格尔县| 大城县|