找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: Awkward
61#
發(fā)表于 2025-4-1 05:23:41 | 只看該作者
Touching Triangle Representations for 3-Connected Planar Graphs by rectangular grid drawings (e.g., square grid graphs). Finally, we describe a fixed-parameter tractable decision algorithm for testing whether a 3-connected planar graph admits a proper TTG representation.
62#
發(fā)表于 2025-4-1 06:36:49 | 只看該作者
63#
發(fā)表于 2025-4-1 12:53:46 | 只看該作者
64#
發(fā)表于 2025-4-1 15:11:29 | 只看該作者
65#
發(fā)表于 2025-4-1 21:33:52 | 只看該作者
Open Rectangle-of-Influence Drawings of Non-triangulated Planar Graphsther hand, we show that if the planar embedding is not fixed, then deciding if a given planar graph has an open weak RI-drawing is NP-complete. NP-completeness holds even for open weak RI-drawings with non-aligned frames.
66#
發(fā)表于 2025-4-2 02:08:08 | 只看該作者
Bioactive Compounds from Extremophilesatorial search space, which is of benefit for all enumeration-type algorithms. Based thereon, we give new classes of polynomially testable graphs and a practically efficient exact planarity test for general clustered graphs based on an integer linear program.
67#
發(fā)表于 2025-4-2 03:16:33 | 只看該作者
68#
發(fā)表于 2025-4-2 07:14:22 | 只看該作者
69#
發(fā)表于 2025-4-2 14:31:57 | 只看該作者
Microbiological Hazards of Infusion Therapya ..-VPG representation of a planar graph can be constructed in .(..) time. We further show that the triangle-free planar graphs are contact graphs of: L-shapes, Γ-shapes, vertical segments, and horizontal segments (i.e., a special case of contact ..-VPG). From this proof we gain a new proof that bipartite planar graphs are a subclass of 2-DIR.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
乐都县| 涿州市| 西和县| 都昌县| 咸丰县| 涿州市| 井研县| 两当县| 竹山县| 石家庄市| 普洱| 汝阳县| 容城县| 泗洪县| 山阳县| 苏州市| 南充市| 额敏县| 新余市| 济源市| 普陀区| 揭阳市| 从江县| 仙游县| 涞水县| 绥化市| 北流市| 吐鲁番市| 蒲江县| 巍山| 张北县| 漳州市| 涟水县| 陇南市| 尖扎县| 晴隆县| 海晏县| 绿春县| 天水市| 东乡| 沽源县|