找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復制鏈接]
樓主: 我沒有辱罵
51#
發(fā)表于 2025-3-30 08:20:02 | 只看該作者
52#
發(fā)表于 2025-3-30 15:40:30 | 只看該作者
Point-Set Embedding of Trees with Edge Constraintson . that includes the given partial drawing of .′. We concentrate on trees and show how to compute the output in .(.. log.) time and with at most 1?+?2 ?./2 ? bends per edge, where . is the number of vertices of the given subdrawing. We also prove that there are instances of the problem which require at least .???3 bends for some of the edges.
53#
發(fā)表于 2025-3-30 20:11:33 | 只看該作者
Representation of Planar Hypergraphs by Contacts of Triangles of those hypergraphs which are representable by contact of segments in the plane, We propose some possible generalization directions and open problems, related to the order dimension of the incidence posets of hypergraphs.
54#
發(fā)表于 2025-3-30 23:16:30 | 只看該作者
https://doi.org/10.1007/978-81-322-2598-0lgorithms for the case that seeds are points and covers are disks or triangles. We show that the problem becomes NP-hard if seeds and covers are disks. Concerning task?(b) we show that it is even NP-hard for point seeds and disk covers (given a fixed correspondence between vertices and seeds).
55#
發(fā)表于 2025-3-31 02:53:24 | 只看該作者
56#
發(fā)表于 2025-3-31 06:35:25 | 只看該作者
Crossing Number of Graphs with Rotation Systemsf multigraphs with rotation systems on a fixed number . of vertices. For .?=?1 and .?=?2 the crossing number can be computed in polynomial time and approximated to within a factor of 2 in linear time. For larger . we show how to approximate the crossing number to within a factor of . in time .(..) on a graph with . edges.
57#
發(fā)表于 2025-3-31 09:14:38 | 只看該作者
Characterization of Unlabeled Level Planar Graphse labelings. Our contributions are twofold. First, we provide linear time drawing algorithms for . graphs. Second, we provide a complete characterization of . graphs by showing that any other graph must contain a subgraph homeomorphic to one of seven forbidden graphs.
58#
發(fā)表于 2025-3-31 15:07:11 | 只看該作者
Moving Vertices to Make Drawings Planeow that . is NP-hard and hard to approximate. Second, we establish a connection to the graph-drawing problem ., which yields similar results for that problem. Third, we give bounds for the behavior of . on trees and general planar graphs.
59#
發(fā)表于 2025-3-31 19:50:11 | 只看該作者
60#
發(fā)表于 2025-3-31 23:58:33 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 03:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
清涧县| 资兴市| 红河县| 湖口县| 怀集县| 象州县| 潍坊市| 浦城县| 洮南市| 雷波县| 凉山| 瑞丽市| 万年县| 扎兰屯市| 元江| 堆龙德庆县| 历史| 荔浦县| 浦东新区| 承德市| 兴仁县| 东宁县| 石泉县| 松溪县| 唐河县| 西和县| 通化县| 淅川县| 大渡口区| 介休市| 东明县| 奉化市| 曲沃县| 龙州县| 祁东县| 甘谷县| 肃宁县| 崇义县| 平武县| 静宁县| 阳高县|