找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
51#
發(fā)表于 2025-3-30 10:17:17 | 只看該作者
52#
發(fā)表于 2025-3-30 15:26:46 | 只看該作者
53#
發(fā)表于 2025-3-30 16:46:28 | 只看該作者
Three-Dimensional Grid Drawings with Sub-quadratic Volume graphs with bounded genus, and graphs with no bounded complete graph as a minor. The previous best bound for these graph families was .. These results (partially) solve open problems due to Pach, Thiele, and Tóth [. 1997] and Felsner, Liotta, and Wismath [. 2001].
54#
發(fā)表于 2025-3-30 21:24:33 | 只看該作者
55#
發(fā)表于 2025-3-31 01:53:54 | 只看該作者
56#
發(fā)表于 2025-3-31 07:44:50 | 只看該作者
57#
發(fā)表于 2025-3-31 09:29:32 | 只看該作者
https://doi.org/10.1007/978-90-481-9437-7it symmetric. We present a general approach to this problem: we allow arbitrary edge deletions and edge creations; every single modification can be given an individual weight. We apply integer programming techniques to solve this problem exactly or heuristically and give runtime results for a first implementation.
58#
發(fā)表于 2025-3-31 14:57:39 | 只看該作者
https://doi.org/10.1007/978-3-030-87512-1 on the queuenumber of ..(.), it is shown that for any fixed digraph ., ..(.) has a three-dimensional drawing with .(.) volume, where . is the number of vertices in ..(.). We also apply these results to particular families of iterated line digraphs such as de Bruijn digraphs, Kautz digraphs, butterfly digraphs, and wrapped butterfly digraphs.
59#
發(fā)表于 2025-3-31 18:57:37 | 只看該作者
60#
發(fā)表于 2025-4-1 01:42:24 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 00:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长武县| 简阳市| 泸州市| 双江| 河曲县| 塘沽区| 桓仁| 金湖县| 浮山县| 新邵县| 嘉祥县| 正蓝旗| 新化县| 琼结县| 旅游| 慈溪市| 盐亭县| 永宁县| 临安市| 都匀市| 绥德县| 山阴县| 盘山县| 浦县| 台北县| 调兵山市| 太谷县| 大名县| 马鞍山市| 余庆县| 崇州市| 酒泉市| 南涧| 三都| 屏南县| 汶上县| 旅游| 天水市| 静宁县| 郁南县| 新泰市|