找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: 浮華
41#
發(fā)表于 2025-3-28 18:32:26 | 只看該作者
42#
發(fā)表于 2025-3-28 19:50:50 | 只看該作者
43#
發(fā)表于 2025-3-28 22:54:37 | 只看該作者
The Chernoff Boundigh probability. When this is the case, we say that . is .. In this book, we will see a number of tools for proving that a random variable is concentrated, including Talagrand’s Inequality and Azuma’s Inequality. In this chapter, we begin with the simplest such tool, the Chernoff Bound.
44#
發(fā)表于 2025-3-29 04:41:27 | 只看該作者
Hadwiger’s ConjectureXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSbaaSqaaa% baaaaaaaaapeGaamiwaaWdaeqaaOWdbiaacIcacaWGhbGaaiykamrr% 1ngBPrwtHrhAYaqeguuDJXwAKbstHrhAGq1D
45#
發(fā)表于 2025-3-29 07:47:28 | 只看該作者
A First Glimpse of Total Colouring of one of them, the First Moment Method. In this chapter, we will illustrate the power of combining the other two, the Local Lemma and the Chernoff Bound, by discussing their application to total colouring.
46#
發(fā)表于 2025-3-29 11:33:32 | 只看該作者
47#
發(fā)表于 2025-3-29 15:54:59 | 只看該作者
Total Colouring Revisitedct with it. We then obtained a total colouring by modifying the edge colouring so as to eliminate the conflicts. In this chapter, we take the opposite approach, first choosing a vertex colouring and then choosing an edge colouring which does not conflict . with the vertex colouring, thereby obtainin
48#
發(fā)表于 2025-3-29 21:26:40 | 只看該作者
Talagrand’s Inequality and Colouring Sparse Graphs close to its expected value with high probability. Such tools are extremely valuable to users of the probabilistic method as they allow us to show that with high probability, a random experiment behaves approximately as we “expect” it to.
49#
發(fā)表于 2025-3-30 03:47:49 | 只看該作者
50#
發(fā)表于 2025-3-30 06:44:42 | 只看該作者
Graphs with Girth at Least FivefeaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8% qacaGGOaGaaGymaiabgk
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 07:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邵阳市| 吉木乃县| 新安县| 武乡县| 杂多县| 读书| 重庆市| 贵港市| 南涧| 固安县| 察隅县| 张家川| 衡南县| 石棉县| 孟连| 行唐县| 宿州市| 页游| 广宁县| 盐城市| 吴川市| 河池市| 集安市| 政和县| 当涂县| 克拉玛依市| 太和县| 中西区| 石门县| 花垣县| 舞钢市| 沂南县| 建宁县| 略阳县| 拉孜县| 北流市| 赣榆县| 鄂温| 浮梁县| 阿拉善左旗| 弥勒县|