找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global and Stochastic Analysis with Applications to Mathematical Physics; Yuri E. Gliklikh Book 2011 Springer-Verlag London Limited 2011 G

[復制鏈接]
樓主: 大口水罐
41#
發(fā)表于 2025-3-28 17:54:59 | 只看該作者
42#
發(fā)表于 2025-3-28 19:34:59 | 只看該作者
Yuri E. GliklikhCovers branches of mathematics previously absent in monograph form.Combines methods of Global and Stochastic Analysis, enabling a more or less common treatment for areas of mathematical physics tradit
43#
發(fā)表于 2025-3-29 00:48:17 | 只看該作者
Kurzes Lehrbuch der Physiologischen Chemieartman, .)). The main aim of this section is to modify some conditions of this sort in such a way that they become necessary and sufficient. The trick here is the transition to extended phase spaces and an analysis of the so-called proper functions or complete Riemannian metrics on manifolds.
44#
發(fā)表于 2025-3-29 04:21:16 | 只看該作者
45#
發(fā)表于 2025-3-29 07:26:05 | 只看該作者
46#
發(fā)表于 2025-3-29 12:52:59 | 只看該作者
47#
發(fā)表于 2025-3-29 16:18:32 | 只看該作者
Kurzgefa?te Elektrizit?tswirtschaftslehre,.) with kinetic energy given by the (weak) Riemannian metric. Here we analyze those systems which are naturally related to certain problems of hydrodynamics. Note that according to the Lagrangian formalism, a trajectory of such a system gives the flow of a fluid.
48#
發(fā)表于 2025-3-29 21:19:48 | 只看該作者
49#
發(fā)表于 2025-3-30 02:50:12 | 只看該作者
Analysis on Groups of Diffeomorphisms... A detailed description of Sobolev spaces can be found, e.g., in (Egorov, .). An introduction to the manifold structure in functional sets can be found in (Eliasson, .). The reader may wish to consult (Ebin and Marsden, .) for details on the remaining material of this section.
50#
發(fā)表于 2025-3-30 05:40:58 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
哈密市| 石景山区| 弋阳县| 正安县| 霞浦县| 利津县| 闽清县| 西安市| 永城市| 永安市| 松原市| 贵定县| 陆丰市| 临西县| 筠连县| 辽阳市| 易门县| 赣州市| 武威市| 霸州市| 四川省| 大名县| 渝北区| 五家渠市| 南阳市| 马尔康县| 正镶白旗| 龙里县| 阿图什市| 奉化市| 衡南县| 普安县| 奇台县| 黔东| 新河县| 蛟河市| 土默特左旗| 武安市| 舒兰市| 彩票| 军事|