找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Stability Analysis of Shear Flows; Rameshkumar Bhoraniya,Gayathri Swaminathan,Vinod N Book 2023 The Editor(s) (if applicable) and T

[復制鏈接]
樓主: 從未沮喪
21#
發(fā)表于 2025-3-25 03:20:58 | 只看該作者
22#
發(fā)表于 2025-3-25 10:09:19 | 只看該作者
23#
發(fā)表于 2025-3-25 11:39:09 | 只看該作者
,Axisymmetric Boundary Layer on?a?Circular Cone,ered parallel to the axis of the cone at the inlet. The angle of attack is zero, and hence, the base flow is axisymmetric. The favourable pressure gradient develops in the streamwise direction due to the cone angle. The Reynolds number is calculated based on the cone radius (.) at the inlet and free
24#
發(fā)表于 2025-3-25 17:04:01 | 只看該作者
,Boundary Layer on?an?Inclined Flat Plate,s. A symmetric wedge flow with different non-dimensional pressure gradient parameters (.) has been considered. The pressure gradient (.) in the flow direction is zero for ., favourable (negative) for . and adverse (positive) for .. The base flow is computed by the numerical solution of the Falkner-S
25#
發(fā)表于 2025-3-25 23:02:48 | 只看該作者
26#
發(fā)表于 2025-3-26 02:26:00 | 只看該作者
27#
發(fā)表于 2025-3-26 06:39:42 | 只看該作者
https://doi.org/10.1007/978-3-322-86888-6ce the two commonly used approximations which result in a problem solvable locally at one streamwise location. These are the parallel flow assumption and the weakly non-parallel flow assumption. Some applications of each are described. Then we introduce strongly non-parallel flows and the global sta
28#
發(fā)表于 2025-3-26 10:35:11 | 只看該作者
29#
發(fā)表于 2025-3-26 13:59:00 | 只看該作者
30#
發(fā)表于 2025-3-26 17:28:52 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-15 11:52
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
彭阳县| 襄樊市| 阿图什市| 甘泉县| 瑞丽市| 房产| 安丘市| 利津县| 清河县| 芒康县| 成安县| 井陉县| 桓仁| 壤塘县| 安阳市| 上饶市| 杭锦后旗| 临江市| 永登县| 巍山| 大田县| 西乌珠穆沁旗| 桓台县| 米易县| 阿拉善右旗| 开封市| 石嘴山市| 陈巴尔虎旗| 辽宁省| 济南市| 巍山| 滨海县| 贵州省| 读书| 土默特右旗| 岗巴县| 淳安县| 镇康县| 杭锦后旗| 泰顺县| 北海市|