找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Optimization with Non-Convex Constraints; Sequential and Paral Roman G. Strongin,Yaroslav D. Sergeyev Book 2000 Springer Science+Bus

[復(fù)制鏈接]
樓主: 退縮
21#
發(fā)表于 2025-3-25 06:48:13 | 只看該作者
22#
發(fā)表于 2025-3-25 09:42:23 | 只看該作者
Introduction to Drug Metabolisming in optimal design of technical systems (see e.g., Batishchev (1975), Kasnoshchekov, Petrov and Fiodorov (1986)), in conditions of uncertainty (see e.g., Zhukovskii and Molostvov (1990)), in classical problems of identifying parameters of a model to match the experimental data, etc. (see also e.g
23#
發(fā)表于 2025-3-25 13:52:28 | 只看該作者
Modal auxiliaries. Verb plus infinitive,s the .-dimensional Euclidean space and the .(.) (henceforth denoted ...(.)) and the left-hand sides ..(.) 1 ≤ . ≤ ., of the constraints are . with respective constants .., 1 ≤ . ≤ . + 1, i.e., for any two points .′ .″ ∈ . it is true that . 1 ≤ . ≤ . + 1. Note that (8.1.1) is the obvious generalizat
24#
發(fā)表于 2025-3-25 16:10:42 | 只看該作者
25#
發(fā)表于 2025-3-25 21:31:23 | 只看該作者
Global Optimization Algorithms as Statistical Decision Procedures — The Information Approachded by the uniform grid technique (1.1.13)–(1.1.15) for some specified number . of trials. This assumption, which is quite natural due to the relation (1.1.17), reduces the continuous problem (2.1.1) to the discrete problem of finding the node .. of the uniform grid ., satisfying the inequalities .,
26#
發(fā)表于 2025-3-26 02:45:51 | 只看該作者
27#
發(fā)表于 2025-3-26 04:28:11 | 只看該作者
Global Optimization Methods as Bounding Procedures — The Geometric Approach been mentioned in Chapter 1, this problem has been intensively studied by many authors. In this book, on a level with the information approach presented in the previous Chapters, we discuss the geometric approach for solving the problem (2.1.1). We pay great attention to the ideas of an adaptive es
28#
發(fā)表于 2025-3-26 09:50:23 | 只看該作者
29#
發(fā)表于 2025-3-26 13:14:53 | 只看該作者
30#
發(fā)表于 2025-3-26 19:43:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 14:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永仁县| 鄂伦春自治旗| 巴中市| 泽普县| 卓资县| 常德市| 榆树市| 浮山县| 广汉市| 九江县| 红河县| 新晃| 万载县| 沈阳市| 宁阳县| 磐安县| 芒康县| 浏阳市| 固安县| 神农架林区| 岳阳县| 屯门区| 金山区| 都江堰市| 安徽省| 安新县| 班戈县| 楚雄市| 鄯善县| 台东县| 五原县| 昔阳县| 四会市| 石屏县| 山丹县| 刚察县| 许昌市| 都江堰市| 新宾| 托里县| 葵青区|