找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Optimization; Deterministic Approa Reiner Horst,Hoang Tuy Book 19901st edition Springer-Verlag Berlin Heidelberg 1990 Decision Theor

[復(fù)制鏈接]
樓主: 氣泡
21#
發(fā)表于 2025-3-25 06:36:18 | 只看該作者
Successive Partition MethodsThis chapter is devoted to a class of methods for concave minimization which investigate the feasible domain by dividing it into smaller pieces and refining the partition as needed (successive partition methods, branch and bound).
22#
發(fā)表于 2025-3-25 08:35:39 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:37 | 只看該作者
24#
發(fā)表于 2025-3-25 19:18:56 | 只看該作者
Stephen A. Krawetz,David D. Wombleart involving most of the variables of the problem, and a concave part involving only a relatively small number of variables. More precisely, these problems have the form.where f: ?. → ? is a concave function, Ω is a polyhedron, d and y are vectors in ?., and n is generally much smaller than h.
25#
發(fā)表于 2025-3-25 21:23:20 | 只看該作者
Some Important Classes of Global Optimization Problemsgramming, and Lipschitz optimization. Some basic properties of these problems and various applications are discussed. It is also shown that very general systems of equalities and (or) inequalities can be formulated as global optimization problems.
26#
發(fā)表于 2025-3-26 02:20:55 | 只看該作者
27#
發(fā)表于 2025-3-26 06:51:59 | 只看該作者
28#
發(fā)表于 2025-3-26 12:16:07 | 只看該作者
em of inequalities. It is well known that in practically all disciplines where mathematical models are used there are many real-world problems which can be formulated as multi extremal global optimization problems.978-3-662-02598-7
29#
發(fā)表于 2025-3-26 15:46:38 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:25 | 只看該作者
Concavity Cutsrned with using cuts in a “.” manner: typically, cuts were generated in such a way that no feasible point of the problem is excluded and the intersection of all the cuts contains the whole feasible region. This technique is most successful when the feasible region is a convex set, so that supporting
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
紫金县| 南投市| 新余市| 门头沟区| 馆陶县| 扎囊县| 榆社县| 石狮市| 屯留县| 宝兴县| 郯城县| 和龙市| 平山县| 怀化市| 无为县| 高陵县| 全南县| 页游| 措勤县| 齐河县| 壶关县| 安庆市| 万源市| 松原市| 丽江市| 塔城市| 仪征市| 襄樊市| 西盟| 佛教| 阳西县| 息烽县| 万载县| 博兴县| 当雄县| 高雄县| 福安市| 平顶山市| 柳林县| 双城市| 兴城市|