找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Optimization; Deterministic Approa Reiner Horst,Hoang Tuy Book 19901st edition Springer-Verlag Berlin Heidelberg 1990 Decision Theor

[復(fù)制鏈接]
樓主: 氣泡
21#
發(fā)表于 2025-3-25 06:36:18 | 只看該作者
Successive Partition MethodsThis chapter is devoted to a class of methods for concave minimization which investigate the feasible domain by dividing it into smaller pieces and refining the partition as needed (successive partition methods, branch and bound).
22#
發(fā)表于 2025-3-25 08:35:39 | 只看該作者
23#
發(fā)表于 2025-3-25 13:14:37 | 只看該作者
24#
發(fā)表于 2025-3-25 19:18:56 | 只看該作者
Stephen A. Krawetz,David D. Wombleart involving most of the variables of the problem, and a concave part involving only a relatively small number of variables. More precisely, these problems have the form.where f: ?. → ? is a concave function, Ω is a polyhedron, d and y are vectors in ?., and n is generally much smaller than h.
25#
發(fā)表于 2025-3-25 21:23:20 | 只看該作者
Some Important Classes of Global Optimization Problemsgramming, and Lipschitz optimization. Some basic properties of these problems and various applications are discussed. It is also shown that very general systems of equalities and (or) inequalities can be formulated as global optimization problems.
26#
發(fā)表于 2025-3-26 02:20:55 | 只看該作者
27#
發(fā)表于 2025-3-26 06:51:59 | 只看該作者
28#
發(fā)表于 2025-3-26 12:16:07 | 只看該作者
em of inequalities. It is well known that in practically all disciplines where mathematical models are used there are many real-world problems which can be formulated as multi extremal global optimization problems.978-3-662-02598-7
29#
發(fā)表于 2025-3-26 15:46:38 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:25 | 只看該作者
Concavity Cutsrned with using cuts in a “.” manner: typically, cuts were generated in such a way that no feasible point of the problem is excluded and the intersection of all the cuts contains the whole feasible region. This technique is most successful when the feasible region is a convex set, so that supporting
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 16:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
健康| 吕梁市| 洛南县| 广南县| 定西市| 晋州市| 新巴尔虎右旗| 浮山县| 汉川市| 福泉市| 会同县| 正蓝旗| 宁晋县| 元阳县| 姜堰市| 平南县| 澎湖县| 双流县| 正阳县| 天津市| 岳阳县| 哈巴河县| 桂林市| 当雄县| 仪陇县| 泸定县| 滦平县| 吉水县| 涡阳县| 松原市| 永清县| 汤原县| 彭阳县| 洪湖市| 松滋市| 格尔木市| 连州市| 平泉县| 大埔县| 晴隆县| 新乐市|