找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Bifurcation Theory and Hilbert’s Sixteenth Problem; Valery A. Gaiko Book 2003 Springer Science+Business Media New York 2003 differe

[復(fù)制鏈接]
樓主: Forestall
11#
發(fā)表于 2025-3-23 13:26:34 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:46 | 只看該作者
Radiation Experimental Results,rko for two-dimensional analytic systems, to the study of global bifurcations of multiple limit cycles in polynomial systems. There is a quite definite number of field-rotation parameters determining the bifurcations of multiple limit cycles in the polynomial systems, and in some cases, for example,
13#
發(fā)表于 2025-3-23 18:46:47 | 只看該作者
14#
發(fā)表于 2025-3-24 00:22:12 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:51 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:06 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:52:15 | 只看該作者
Book 2003ss of Mathematicians in Paris. The talk covered practically all directions of mathematical thought of that time and contained a list of 23 problems which determined the further development of mathema- tics in many respects (1, 119]. Hilbert‘s Sixteenth Problem (the second part) was stated as follows
19#
發(fā)表于 2025-3-24 19:15:16 | 只看該作者
20#
發(fā)表于 2025-3-25 02:48:12 | 只看該作者
Radiation Experimental Results, obtained results and applying the Wintner-Perko termination principle for multiple limit cycles, we suggest a new (global) approach to the solution of Hilbert’s Sixteenth Problem in the case of quadratic systems. This approach can be applied also to cubic and more general polynomial systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武冈市| 武汉市| 莱州市| 沙田区| 丰顺县| 石狮市| 安泽县| 进贤县| 永年县| 林州市| 株洲县| 依兰县| 崇仁县| 淳安县| 安康市| 紫云| 陆川县| 宁海县| 安康市| 邮箱| 武城县| 山西省| 金华市| 大英县| 蛟河市| 电白县| 武清区| 安乡县| 二手房| 平邑县| 石狮市| 军事| 涞源县| 双鸭山市| 麟游县| 岢岚县| 安康市| 陆河县| 泸定县| 体育| 钦州市|