找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Global Bifurcation Theory and Hilbert’s Sixteenth Problem; Valery A. Gaiko Book 2003 Springer Science+Business Media New York 2003 differe

[復制鏈接]
樓主: Forestall
11#
發(fā)表于 2025-3-23 13:26:34 | 只看該作者
12#
發(fā)表于 2025-3-23 14:40:46 | 只看該作者
Radiation Experimental Results,rko for two-dimensional analytic systems, to the study of global bifurcations of multiple limit cycles in polynomial systems. There is a quite definite number of field-rotation parameters determining the bifurcations of multiple limit cycles in the polynomial systems, and in some cases, for example,
13#
發(fā)表于 2025-3-23 18:46:47 | 只看該作者
14#
發(fā)表于 2025-3-24 00:22:12 | 只看該作者
15#
發(fā)表于 2025-3-24 04:34:51 | 只看該作者
16#
發(fā)表于 2025-3-24 08:50:06 | 只看該作者
17#
發(fā)表于 2025-3-24 12:56:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:52:15 | 只看該作者
Book 2003ss of Mathematicians in Paris. The talk covered practically all directions of mathematical thought of that time and contained a list of 23 problems which determined the further development of mathema- tics in many respects (1, 119]. Hilbert‘s Sixteenth Problem (the second part) was stated as follows
19#
發(fā)表于 2025-3-24 19:15:16 | 只看該作者
20#
發(fā)表于 2025-3-25 02:48:12 | 只看該作者
Radiation Experimental Results, obtained results and applying the Wintner-Perko termination principle for multiple limit cycles, we suggest a new (global) approach to the solution of Hilbert’s Sixteenth Problem in the case of quadratic systems. This approach can be applied also to cubic and more general polynomial systems.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
聂拉木县| 礼泉县| 大连市| 米泉市| 昆山市| 彭山县| 六枝特区| 象山县| 探索| 荥阳市| 永顺县| 普格县| 贵溪市| 甘洛县| 丹东市| 衡东县| SHOW| 定南县| 呼图壁县| 若羌县| 芮城县| 石楼县| 马鞍山市| 霍州市| 定南县| 铁岭市| 洛阳市| 鄂尔多斯市| 乌拉特后旗| 枞阳县| 澄江县| 克东县| 聂荣县| 桦南县| 开平市| 南雄市| 麻城市| 始兴县| 天全县| 万源市| 章丘市|