找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators; Heejae Kim Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 面臨
11#
發(fā)表于 2025-3-23 13:28:46 | 只看該作者
Interplay of Glide-Symmetric , Magnetic Topological Crystalline Insulators and Symmetry: Inversion number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
12#
發(fā)表于 2025-3-23 15:35:47 | 只看該作者
13#
發(fā)表于 2025-3-23 18:53:49 | 只看該作者
Conclusion and Outlook,gical phase transition, new formulas of the glide-. topological invariant in the presence of inversion symmetry from both approaches in .-space and real-space, and a manipulation for such glide-symmetric . magnetic topological phase.
14#
發(fā)表于 2025-3-23 23:44:44 | 只看該作者
https://doi.org/10.1007/978-981-16-9077-8Topological Crystalline Insulator; Topological Magnetic Photonic Crystal by Glide Symmetry; Weyl Semim
15#
發(fā)表于 2025-3-24 05:46:17 | 只看該作者
978-981-16-9079-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
16#
發(fā)表于 2025-3-24 09:28:36 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:14 | 只看該作者
18#
發(fā)表于 2025-3-24 16:12:07 | 只看該作者
19#
發(fā)表于 2025-3-24 21:10:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:01:41 | 只看該作者
Interplay of Glide-Symmetric , Magnetic Topological Crystalline Insulators and Symmetry: Inversion number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衢州市| 舞阳县| 兴文县| 南靖县| 垦利县| 石渠县| 双峰县| 九江市| 绵阳市| 柳林县| 玛多县| 灵川县| 凌海市| 台南市| 松原市| 新余市| 建瓯市| 项城市| 昌宁县| 邢台市| 双辽市| 靖江市| 内乡县| 永定县| 渝北区| 尖扎县| 定州市| 通化县| 新晃| 兴隆县| 怀安县| 同德县| 开平市| 四会市| 平阳县| 溧水县| 平定县| 镇原县| 金川县| 禹州市| 利津县|