找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Glide-Symmetric Z2 Magnetic Topological Crystalline Insulators; Heejae Kim Book 2022 The Editor(s) (if applicable) and The Author(s), unde

[復(fù)制鏈接]
樓主: 面臨
11#
發(fā)表于 2025-3-23 13:28:46 | 只看該作者
Interplay of Glide-Symmetric , Magnetic Topological Crystalline Insulators and Symmetry: Inversion number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
12#
發(fā)表于 2025-3-23 15:35:47 | 只看該作者
13#
發(fā)表于 2025-3-23 18:53:49 | 只看該作者
Conclusion and Outlook,gical phase transition, new formulas of the glide-. topological invariant in the presence of inversion symmetry from both approaches in .-space and real-space, and a manipulation for such glide-symmetric . magnetic topological phase.
14#
發(fā)表于 2025-3-23 23:44:44 | 只看該作者
https://doi.org/10.1007/978-981-16-9077-8Topological Crystalline Insulator; Topological Magnetic Photonic Crystal by Glide Symmetry; Weyl Semim
15#
發(fā)表于 2025-3-24 05:46:17 | 只看該作者
978-981-16-9079-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
16#
發(fā)表于 2025-3-24 09:28:36 | 只看該作者
17#
發(fā)表于 2025-3-24 13:05:14 | 只看該作者
18#
發(fā)表于 2025-3-24 16:12:07 | 只看該作者
19#
發(fā)表于 2025-3-24 21:10:43 | 只看該作者
20#
發(fā)表于 2025-3-25 00:01:41 | 只看該作者
Interplay of Glide-Symmetric , Magnetic Topological Crystalline Insulators and Symmetry: Inversion number associated with the normal vector of the glide plane, and they are expressed in terms of integrals of the Berry curvature. In the present chapter, we study the fate of this topological invariant when inversion symmetry is added while time-reversal symmetry (TRS) is not enforced.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 15:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沐川县| 祁阳县| 定结县| 鱼台县| 广元市| 个旧市| 英超| 延边| 兴宁市| 禄丰县| 浦北县| 通榆县| 仁化县| 竹溪县| 丽水市| 忻城县| 宣武区| 叶城县| 荥阳市| 张家口市| 龙口市| 绥滨县| 瑞昌市| 南漳县| 合阳县| 瑞安市| 津南区| 交城县| 岑溪市| 无为县| 开封县| 万全县| 郎溪县| 饶河县| 达尔| 禹城市| 衡阳市| 开鲁县| 扬州市| 武功县| 句容市|