找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geomorphic Risk Reduction Using Geospatial Methods and Tools; Raju Sarkar,Sunil Saha,Rajib Shaw Book 2024 The Editor(s) (if applicable) an

[復(fù)制鏈接]
樓主: malignant
41#
發(fā)表于 2025-3-28 17:24:22 | 只看該作者
42#
發(fā)表于 2025-3-28 21:30:52 | 只看該作者
43#
發(fā)表于 2025-3-29 00:39:02 | 只看該作者
44#
發(fā)表于 2025-3-29 04:31:43 | 只看該作者
45#
發(fā)表于 2025-3-29 08:42:59 | 只看該作者
Introduction to the Finite Element Method, deposition of sediments. People in Manikchak, Kaliachak-II, and Kaliachak-III blocks of Malda district West Bengal were highly affected due to this river shifting in the lower course of the Ganga River. A few portions of the Rajmahal block of Jharkhand, located on the right side of the river are also affected.
46#
發(fā)表于 2025-3-29 14:28:32 | 只看該作者
47#
發(fā)表于 2025-3-29 18:59:18 | 只看該作者
Landslide Susceptibility Assessment Based on Machine Learning Techniquese datasets were recommended. A total of 9 machine learning methods applied in LSA were simply introduced. The advantages and future work of LSA based on machine learning techniques were summarized from the aspects of scale, performance, modeling, and interpretability.
48#
發(fā)表于 2025-3-29 22:55:56 | 只看該作者
49#
發(fā)表于 2025-3-30 02:40:52 | 只看該作者
The Adoption of Random Forest (RF) and Support Vector Machine (SVM) with Cat Swarm Optimization (CSOs that would be used for both training and testing by using a random sampling technique. This allowed us to have complete control over the models. It was discovered that CSO not only improved the fitting of the model and the quality of the results, but it also speed up the procedure.
50#
發(fā)表于 2025-3-30 05:44:02 | 只看該作者
Book 2024itional statistical methods and advanced machine learning methods and addresses the different ways to reduce the impact of geomorphic hazards..In recent years with the development of human infrastructures, geomorphic hazards are gradually increasing, which include landslides, flood and soil erosion,
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 13:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大新县| 和田县| 连州市| 尼勒克县| 镇雄县| 娄烦县| 津市市| 油尖旺区| 扎鲁特旗| 延长县| 偃师市| 满洲里市| 庆城县| 娄烦县| 包头市| 柘荣县| 石屏县| 泸水县| 鄱阳县| 安岳县| 富蕴县| 巩留县| 偏关县| 松滋市| 石柱| 都兰县| 西和县| 江安县| 宜阳县| 黔江区| 开封县| 康马县| 剑川县| 永善县| 当阳市| 勐海县| 定结县| 梁山县| 甘孜| 申扎县| 建湖县|