找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry — von Staudt’s Point of View; Proceedings of the N Peter Plaumann,Karl Strambach Conference proceedings 1981 D. Reidel Publishing

[復(fù)制鏈接]
樓主: HABIT
21#
發(fā)表于 2025-3-25 05:24:22 | 只看該作者
22#
發(fā)表于 2025-3-25 10:17:38 | 只看該作者
23#
發(fā)表于 2025-3-25 14:13:18 | 只看該作者
Einzelkosten- und DeckungsbeitragsrechnungWhat did Projective Geometry mean before von Staudt? It owed much to Monge, but its true founder was J.V. Poncelet. He invented the so-called continuity principle (Traité des propriétés projectives des figures, 1822, p. XIII:)
24#
發(fā)表于 2025-3-25 18:25:19 | 只看該作者
Cross Ratios and a Unifying Treatment of Von Staudt’s Notion of Reeller ZugOn the basis of a complex projective geometry K.G.Chr. von Staudt defined the notion of reeller Zug or what was called later on von Staudt’sche Kette. Those chains can be represented for instance in the completed complex plane as circles or lines extended by the point at infinity.
25#
發(fā)表于 2025-3-25 21:20:51 | 只看該作者
Projectivities in Free-Like GeometriesIn a projective plane all the projectivities of a line onto itself form a group II with respect to the composition of mappings. This group is an invariant for the plane since different lines have groups which are isomorphic (also as permutation groups).
26#
發(fā)表于 2025-3-26 03:52:27 | 只看該作者
27#
發(fā)表于 2025-3-26 07:16:53 | 只看該作者
Projectivities and the Topology of LinesA topological projective plane is a projective plane . = (P, .) such that P and . are topological spaces (neither discrete nor indiscrete) and join and intersection are continuous: for any open set U the set of all pairs of distinct lines intersecting in a point of U is open in .. and dually.
28#
發(fā)表于 2025-3-26 12:03:03 | 只看該作者
29#
發(fā)表于 2025-3-26 14:56:41 | 只看該作者
The Impact of Von Staudt’s Foundations of GeometryWhat did Projective Geometry mean before von Staudt? It owed much to Monge, but its true founder was J.V. Poncelet. He invented the so-called continuity principle (Traité des propriétés projectives des figures, 1822, p. XIII:)
30#
發(fā)表于 2025-3-26 18:22:17 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 10:37
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌吉市| 静海县| 临沭县| 昌吉市| 武义县| 卓尼县| 诸城市| 资源县| 石棉县| 江永县| 北流市| 海南省| 镇远县| 甘德县| 皋兰县| 丹棱县| 依兰县| 大埔区| 石阡县| 诏安县| 大名县| 响水县| 秦安县| 曲松县| 铜鼓县| 东兰县| 榆林市| 梅河口市| 许昌县| 华亭县| 邛崃市| 榆树市| 扶风县| 甘南县| 泰安市| 贞丰县| 广元市| 莱芜市| 九江市| 重庆市| 邮箱|