找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Surfaces; John Stillwell Textbook 1992 Springer Science+Business Media New York 1992 Area.Fractal.curvature.differential geome

[復制鏈接]
樓主: 關(guān)稅
11#
發(fā)表于 2025-3-23 11:02:04 | 只看該作者
978-0-387-97743-0Springer Science+Business Media New York 1992
12#
發(fā)表于 2025-3-23 17:22:46 | 只看該作者
Geometry of Surfaces978-1-4612-0929-4Series ISSN 0172-5939 Series E-ISSN 2191-6675
13#
發(fā)表于 2025-3-23 18:45:27 | 只看該作者
14#
發(fā)表于 2025-3-24 01:06:11 | 只看該作者
Di- und triklinometrisches System,t . ? ., more than one line through . which does not meet . Such a surface departs from the euclidean plane in the opposite way to the sphere, and the hyperbolic plane, in fact, emerged from the study of surfaces which “curve” in the opposite way to the sphere. The train of thought, in brief, was this.
15#
發(fā)表于 2025-3-24 04:36:32 | 只看該作者
16#
發(fā)表于 2025-3-24 10:04:25 | 只看該作者
The Hyperbolic Plane,t . ? ., more than one line through . which does not meet . Such a surface departs from the euclidean plane in the opposite way to the sphere, and the hyperbolic plane, in fact, emerged from the study of surfaces which “curve” in the opposite way to the sphere. The train of thought, in brief, was this.
17#
發(fā)表于 2025-3-24 14:00:31 | 只看該作者
Tessellations of Compact Surfaces, sides of II according to the side pairing, is also an orbit space .Γ. Here . = . is S., ?., or ?.—the surface from which II originates—and Γ is the group generated by the side-pairing transformations of II. Because of its interpretation as an orbit space, . is also called an
18#
發(fā)表于 2025-3-24 18:48:37 | 只看該作者
19#
發(fā)表于 2025-3-24 22:07:10 | 只看該作者
The Euclidean Plane, properties of lines and circles as axioms and derived theorems from them by pure logic. Actually he occasionally made use of unstated axioms; nevertheless his approach is feasible and it was eventually made rigorous by Hubert [1899].
20#
發(fā)表于 2025-3-25 01:01:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 12:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
运城市| 霍邱县| 舒兰市| 十堰市| 调兵山市| 奉化市| 泗洪县| 高尔夫| 五河县| 邢台县| 图木舒克市| 米易县| 许昌市| 阳山县| 彭州市| 保德县| 荣昌县| 阿合奇县| 太仆寺旗| 砀山县| 迁安市| 英山县| 萨嘎县| 固安县| 屏南县| 贵阳市| 西贡区| 扎赉特旗| 信丰县| 江北区| 广安市| 阳原县| 兖州市| 吉隆县| 桂平市| 六盘水市| 英超| 元氏县| 珲春市| 桓台县| 潜江市|