找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Surfaces; A Practical Guide fo Stephen P. Radzevich Book 2020Latest edition Springer Nature Switzerland AG 2020 Engineering geo

[復(fù)制鏈接]
樓主: minuscule
31#
發(fā)表于 2025-3-27 00:18:57 | 只看該作者
On a Possibility of Classification of Part Surfacesgular surfaces in global sense is feasible in nature, local part surface patches can be classified. For the investigation of geometry of local part surface patches planar characteristic images are employed. In this analysis Dupin indicatrix, curvature indicatrix, and circular diagrams at a part surf
32#
發(fā)表于 2025-3-27 02:24:22 | 只看該作者
33#
發(fā)表于 2025-3-27 06:12:31 | 只看該作者
34#
發(fā)表于 2025-3-27 10:00:20 | 只看該作者
35#
發(fā)表于 2025-3-27 15:02:36 | 只看該作者
“,”: More Characteristic CurvesAt the beginning main properties of the surface of “Plücker conoid” are briefly outlined. This includes but not limited to basics, analytical representation, and local properties along with auxiliary formulae. This analysis is followed by analytical description of local geometry of a smooth regular
36#
發(fā)表于 2025-3-27 21:19:49 | 只看該作者
37#
發(fā)表于 2025-3-27 23:05:37 | 只看該作者
38#
發(fā)表于 2025-3-28 03:50:49 | 只看該作者
39#
發(fā)表于 2025-3-28 10:17:12 | 只看該作者
Generation of Enveloping Surfaces: Special Casesfaces is introduced. For generation of reversibly-enveloping surfaces a novel method is proposed. This method is illustrated by an example of generation of reversibly-enveloping surfaces in case tooth flanks for geometrically accurate (ideal or perfect) crossed-axis gear pairs. The performed analysi
40#
發(fā)表于 2025-3-28 13:21:02 | 只看該作者
https://doi.org/10.1007/978-3-322-92974-7rms of a smooth regular part surface. For an analytically specified surface, elements of its local geometry are outlined. This consideration includes but is not limited to analytical representation of unit tangent vectors, tangent plane, unit normal vector, unit vectors of principal directions on a
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 00:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆尧县| 章丘市| 衢州市| 临西县| 浦县| 两当县| 惠水县| 佛教| 遂平县| 许昌县| 都兰县| 南平市| 延安市| 即墨市| 夏津县| 曲阳县| 固原市| 西乌珠穆沁旗| 楚雄市| 苏尼特右旗| 盐池县| 民和| 江阴市| 大新县| 银川市| 固安县| 镇江市| 曲阜市| 萨嘎县| 天镇县| 孙吴县| 来安县| 利辛县| 扬州市| 饶河县| 汾阳市| 石景山区| 乐都县| 永登县| 新乐市| 林芝县|