找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Submanifolds and Applications; Bang-Yen Chen,Majid Ali Choudhary,Mohammad Nazrul Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Encounter
41#
發(fā)表于 2025-3-28 15:26:41 | 只看該作者
42#
發(fā)表于 2025-3-28 21:29:44 | 只看該作者
43#
發(fā)表于 2025-3-29 01:00:39 | 只看該作者
,Conformal ,-Ricci-Yamabe Solitons in?the?Framework of?Riemannian Manifolds, gradient CERYS . is an Einstein manifold and the gradient of smooth function . is a constant multiple of .. A non-trivial example of an . equipped with a semi-symmetric metric .-connection is constructed, and hence verify some of our results.
44#
發(fā)表于 2025-3-29 04:32:15 | 只看該作者
45#
發(fā)表于 2025-3-29 08:03:36 | 只看該作者
,The Darboux Mate and?the?Higher Order Curvatures of?Spherical Legendre Curves,, where . is the classical curvature function of .. Several examples are discussed, some of them in relationship with the usual theory of regular space curves. The case of Lorentz–Minkowski sphere . is sketched only from the point of view of the geodesic curvature.
46#
發(fā)表于 2025-3-29 11:40:44 | 只看該作者
47#
發(fā)表于 2025-3-29 16:23:29 | 只看該作者
,Solitons in?,-Gravity,ent Yamabe solitons, .-Ricci and gradient .-Ricci solitons are its metrics. We establish criteria for which Ricci solitons are steady, expanding, or shrinking. Moreover, we study gradient Ricci solitons and prove that either the perfect fluid spacetime represents the dark energy era, or the spacetim
48#
發(fā)表于 2025-3-29 22:27:54 | 只看該作者
,A Survey on?Lagrangian Submanifolds of?Nearly Kaehler Six-Sphere,rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodes
49#
發(fā)表于 2025-3-30 01:15:13 | 只看該作者
Pythagorean Submanifolds,odels of real space forms. They are defined by an equation based on the shape operator. We give several examples and observe that any Pythagorean submanifold is isoparametric where the principal curvatures are given in terms of the Golden ratio. We also classify Pythagorean hypersurfaces.
50#
發(fā)表于 2025-3-30 05:29:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 05:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙坡区| 裕民县| 昌平区| 历史| 邵东县| 阳泉市| 林甸县| 闽侯县| 宝丰县| 阜阳市| 普定县| 朝阳市| 溆浦县| 农安县| 达孜县| 牙克石市| 岗巴县| 东辽县| 北宁市| 彭山县| 塔河县| 栾川县| 老河口市| 柯坪县| 崇明县| 库伦旗| 张家港市| 建湖县| 杭州市| 喀什市| 循化| 合江县| 沧州市| 二连浩特市| 屏东市| 泰兴市| 永善县| 葵青区| 渭南市| 昌都县| 达孜县|