找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Submanifolds and Applications; Bang-Yen Chen,Majid Ali Choudhary,Mohammad Nazrul Book 2024 The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Encounter
21#
發(fā)表于 2025-3-25 03:51:06 | 只看該作者
22#
發(fā)表于 2025-3-25 09:27:58 | 只看該作者
23#
發(fā)表于 2025-3-25 12:48:05 | 只看該作者
24#
發(fā)表于 2025-3-25 17:47:07 | 只看該作者
https://doi.org/10.1007/978-3-322-96170-9rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodesic unit three-sphere are presented.
25#
發(fā)表于 2025-3-25 23:38:28 | 只看該作者
,Einkaufsverhandlungen (aus-)führen,odels of real space forms. They are defined by an equation based on the shape operator. We give several examples and observe that any Pythagorean submanifold is isoparametric where the principal curvatures are given in terms of the Golden ratio. We also classify Pythagorean hypersurfaces.
26#
發(fā)表于 2025-3-26 03:22:13 | 只看該作者
https://doi.org/10.1007/978-3-663-13458-9bmanifolds where equality scenarios are valid and present several applications of the main finding. Additionally, we create an inequality for Ricci solitons to discover connections between intrinsic and extrinsic invariants.
27#
發(fā)表于 2025-3-26 07:13:17 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:34 | 只看該作者
,A Survey on?Lagrangian Submanifolds of?Nearly Kaehler Six-Sphere,rvey of results on Lagrangian submanifolds . of the nearly K?hler . in terms of a canonically induced almost contact metric structure, Chen’s equality, normal connection, normal curvature operator, Ricci tensor and conformal flatness. In particular, conditions for . to be Sasakian and totally geodesic unit three-sphere are presented.
29#
發(fā)表于 2025-3-26 14:36:29 | 只看該作者
30#
發(fā)表于 2025-3-26 19:49:46 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 01:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
伊春市| 临沂市| 米泉市| 教育| 新化县| 石河子市| 扶风县| 清涧县| 海晏县| 天气| 宿迁市| 德化县| 射阳县| 静海县| 井陉县| 沐川县| 始兴县| 福建省| 鄂尔多斯市| 安新县| 稻城县| 慈溪市| 庆城县| 泰安市| 乌恰县| 兴宁市| 无极县| 宜昌市| 台中县| 鄂伦春自治旗| 无棣县| 古蔺县| 青河县| 耿马| 大厂| 东乡族自治县| 夏河县| 加查县| 琼结县| 华池县| 防城港市|