找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Manifolds with Non-negative Sectional Curvature; Editors: Rafael Herr Owen Dearricott,Fernando Galaz-García,Wolfgang Zil Book 2

[復制鏈接]
樓主: 鏟除
21#
發(fā)表于 2025-3-25 05:46:16 | 只看該作者
22#
發(fā)表于 2025-3-25 09:14:40 | 只看該作者
Einführung in die pharmazeutische Chemiee show that a compact, simply connected Riemannian 4- or 5-manifold of quasipositive curvature and maximal symmetry rank must be diffeomorphic to the 4-sphere, complex projective plane or the 5-sphere.
23#
發(fā)表于 2025-3-25 12:37:21 | 只看該作者
24#
發(fā)表于 2025-3-25 19:07:23 | 只看該作者
25#
發(fā)表于 2025-3-25 23:55:26 | 只看該作者
26#
發(fā)表于 2025-3-26 02:13:58 | 只看該作者
27#
發(fā)表于 2025-3-26 05:46:42 | 只看該作者
An Introduction to Exterior Differential Systems,ior differential systems. Moreover we discuss the algebraic properties of the Spencer cohomology associated to an exterior differential system and sketch a proof of the theorem of Cartan–K?hler about the analytical solutions to an analytical exterior differential system.
28#
發(fā)表于 2025-3-26 12:27:18 | 只看該作者
Physikalisch-chemische Natur der Schlacken,alisation of the notion of a 3-Sasakian manifold. The examples discussed are related to the theory of isoparametric hypersurfaces of spheres with four principal curvatures. These examples carry Einstein metrics and in some special cases carry metrics with positive sectional curvature.
29#
發(fā)表于 2025-3-26 13:37:25 | 只看該作者
Lectures on ,-Sasakian Manifolds,alisation of the notion of a 3-Sasakian manifold. The examples discussed are related to the theory of isoparametric hypersurfaces of spheres with four principal curvatures. These examples carry Einstein metrics and in some special cases carry metrics with positive sectional curvature.
30#
發(fā)表于 2025-3-26 18:34:49 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 22:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
什邡市| 紫云| 利辛县| 林口县| 临高县| 龙泉市| 华蓥市| 太原市| 若尔盖县| 石泉县| 平谷区| 宁强县| 邵阳市| 吴桥县| 信丰县| 江口县| 石屏县| 和平区| 昭苏县| 乌鲁木齐县| 当涂县| 延吉市| 视频| 东山县| 商洛市| 桃园县| 罗源县| 桃江县| 察哈| 伊通| 德钦县| 朝阳县| 金溪县| 长沙市| 中超| 桦川县| 瑞昌市| 洪江市| 铜川市| 耿马| 玉龙|