找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Hypersurfaces; Thomas E. Cecil,Patrick J. Ryan Book 2015 Thomas E. Cecil and Patrick J. Ryan 2015 Dupin hypersurfaces.Hopf hyp

[復(fù)制鏈接]
樓主: 退縮
21#
發(fā)表于 2025-3-25 05:26:42 | 只看該作者
Systeme von linearen Gleichungen,In this chapter, we study the basic geometry of complex submanifolds in complex space forms, focusing on important examples that arise in the classifications of Hopf hypersurfaces with constant principal curvatures.
22#
發(fā)表于 2025-3-25 10:29:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:23:08 | 只看該作者
Complex Submanifolds of ,, and ,,,In this chapter, we study the basic geometry of complex submanifolds in complex space forms, focusing on important examples that arise in the classifications of Hopf hypersurfaces with constant principal curvatures.
24#
發(fā)表于 2025-3-25 17:48:46 | 只看該作者
,Die Mi?bildungen des weiblichen Genitales,aces in later chapters. Topics treated include focal sets, parallel hypersurfaces, tubes, tight and taut immersions, the relationship between taut and Dupin submanifolds, and the standard embeddings of projective spaces.
25#
發(fā)表于 2025-3-25 21:03:00 | 只看該作者
26#
發(fā)表于 2025-3-26 02:50:51 | 只看該作者
27#
發(fā)表于 2025-3-26 05:21:13 | 只看該作者
Idealtypen als hypothesenbildende Modelle: sphere geometry, and many classification results have been obtained in that setting. In this chapter, we will use the viewpoint of the metric geometry of . as well as that of Lie sphere geometry to obtain results about Dupin hypersurfaces.
28#
發(fā)表于 2025-3-26 10:37:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:50:21 | 只看該作者
Anwendungen der Differentialquotienten,Berndt [30] in .. (see Theorem?8.12). These classifications state that such a hypersurface is an open subset of a hypersurface on Takagi’s list for .., and on Montiel’s list for ... We then study several characterizations of these hypersurfaces based on conditions on their shape operators, curvature
30#
發(fā)表于 2025-3-26 18:29:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
余姚市| 阿鲁科尔沁旗| 永定县| 桃园市| 永兴县| 内江市| 永春县| 庄河市| 呼和浩特市| 静海县| 湾仔区| 北宁市| 东兴市| 永修县| 临西县| 宁德市| 红桥区| 和田市| 汝城县| 汉源县| 苏尼特右旗| 黑水县| 杭锦旗| 孟津县| 栖霞市| 萝北县| 延吉市| 泸溪县| 微博| 韩城市| 孙吴县| 长葛市| 双峰县| 蒙山县| 滦南县| 姜堰市| 即墨市| 尼勒克县| 深圳市| 醴陵市| 凤台县|