找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Harmonic Maps; Yuanlong Xin Book 1996 Birkh?user Boston 1996 Boundary value problem.Geometry.Maps.Minkowski space.cls.manifold

[復(fù)制鏈接]
樓主: 贊美
21#
發(fā)表于 2025-3-25 04:01:39 | 只看該作者
22#
發(fā)表于 2025-3-25 10:49:25 | 只看該作者
Einführung in die chemische Physiologien define a generalized Gauss map. In many cases properties of submanifolds are characterized by their Gauss maps and closely link with the theory of harmonic maps. We now present some results in this direction.
23#
發(fā)表于 2025-3-25 14:19:40 | 只看該作者
24#
發(fā)表于 2025-3-25 18:41:54 | 只看該作者
25#
發(fā)表于 2025-3-25 22:36:57 | 只看該作者
Die Kategorien und das Codieren von Texten,An important topic in the theory of harmonic maps is its complex geometry aspects. We first show that holomorphic maps are specific harmonic maps, and then prove the holomorphicity theorems of certain harmonic maps.
26#
發(fā)表于 2025-3-26 02:11:50 | 只看該作者
27#
發(fā)表于 2025-3-26 07:47:13 | 只看該作者
28#
發(fā)表于 2025-3-26 11:46:10 | 只看該作者
29#
發(fā)表于 2025-3-26 16:36:17 | 只看該作者
Die Kategorien und das Codieren von Texten,he direct method of the calculus of variations. The key point of the method is regularity. Partial regularity of the minimizing maps has been obtained by R. Schoen-K. Uhlenbeck [S-U1] and M. Giaquinta-E. Giusti [G-G]. Later, R. Hardt and F. Lin proved partial regularity for .-harmonic maps [H-L].
30#
發(fā)表于 2025-3-26 18:25:14 | 只看該作者
Existence, Nonexistence and Regularity,he direct method of the calculus of variations. The key point of the method is regularity. Partial regularity of the minimizing maps has been obtained by R. Schoen-K. Uhlenbeck [S-U1] and M. Giaquinta-E. Giusti [G-G]. Later, R. Hardt and F. Lin proved partial regularity for .-harmonic maps [H-L].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 12:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
达拉特旗| 巨鹿县| 沁源县| 莲花县| 霍林郭勒市| 大洼县| 井冈山市| 达拉特旗| 华坪县| 南昌县| 屏东市| 门源| 湘阴县| 鄂尔多斯市| 迭部县| 湘潭县| 襄垣县| 侯马市| 涪陵区| 高平市| 手机| 龙井市| 南乐县| 新营市| 渑池县| 冕宁县| 新疆| 台湾省| 天长市| 巴塘县| 称多县| 金湖县| 雅安市| 忻州市| 宜黄县| 丰顺县| 来宾市| 天全县| 商河县| 津市市| 普陀区|