找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Digital Spaces; Gabor T. Herman Textbook 1998 Birkh?user Boston 1998 Connected space.Geometry.Graph.Graph theory.Sim.Spaces.al

[復制鏈接]
樓主: GLOAT
21#
發(fā)表于 2025-3-25 04:04:29 | 只看該作者
Boundary Tracking, of this, we show that there is a “one-size-fits-all” algorithm which, given a binary picture over a finitary 1-simply connected digital space and a boundary face between a 1-spel and a 0-spel, will return the set of all boundary faces between the component of 1-spels containing the given 1-spel and
22#
發(fā)表于 2025-3-25 07:38:33 | 只看該作者
23#
發(fā)表于 2025-3-25 13:30:36 | 只看該作者
24#
發(fā)表于 2025-3-25 16:50:57 | 只看該作者
2296-5009 uation coefficient in slices through the body. (Since different tissue types attenuate X-rays differently, such maps provide a good visualization of what is in 978-1-4612-8669-1978-1-4612-4136-2Series ISSN 2296-5009 Series E-ISSN 2296-5017
25#
發(fā)表于 2025-3-25 20:52:22 | 只看該作者
Digital Spaces,in digital geometry. We need a framework appropriate for a mathematical treatment of the intuitive notion of a “surface with a connected inside and a connected outside” (a “Jordan surface”) in the discrete multidimensional environment.
26#
發(fā)表于 2025-3-26 02:12:35 | 只看該作者
Verschiedene Entwicklungen reeller Zahlen,After our brief excursion into matters which had to do with topology in the classical sense, we return to our main topic: the geometry of digital spaces. In fact, this is not quite correct; we return to digital spaces, but what we do with them in this chapter may be considered a departure from “geometry.”
27#
發(fā)表于 2025-3-26 04:45:05 | 只看該作者
Binary Pictures,After our brief excursion into matters which had to do with topology in the classical sense, we return to our main topic: the geometry of digital spaces. In fact, this is not quite correct; we return to digital spaces, but what we do with them in this chapter may be considered a departure from “geometry.”
28#
發(fā)表于 2025-3-26 08:52:23 | 只看該作者
978-1-4612-8669-1Birkh?user Boston 1998
29#
發(fā)表于 2025-3-26 12:54:20 | 只看該作者
Geometry of Digital Spaces978-1-4612-4136-2Series ISSN 2296-5009 Series E-ISSN 2296-5017
30#
發(fā)表于 2025-3-26 20:42:09 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 21:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
如皋市| 三原县| 纳雍县| 元谋县| 公主岭市| 阳朔县| 宁德市| 徐闻县| 广平县| 长治县| 道孚县| 广东省| 达孜县| 土默特左旗| 光山县| 金乡县| 甘孜县| 峨眉山市| 府谷县| 唐海县| 吉木萨尔县| 巴塘县| 普格县| 隆德县| 锦屏县| 郓城县| 塔河县| 山阴县| 珲春市| 惠来县| 乌拉特前旗| 安塞县| 京山县| 武威市| 昌都县| 元氏县| 马龙县| 高要市| 台东县| 遂昌县| 龙海市|