找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Digital Spaces; Gabor T. Herman Textbook 1998 Birkh?user Boston 1998 Connected space.Geometry.Graph.Graph theory.Sim.Spaces.al

[復(fù)制鏈接]
樓主: GLOAT
21#
發(fā)表于 2025-3-25 04:04:29 | 只看該作者
Boundary Tracking, of this, we show that there is a “one-size-fits-all” algorithm which, given a binary picture over a finitary 1-simply connected digital space and a boundary face between a 1-spel and a 0-spel, will return the set of all boundary faces between the component of 1-spels containing the given 1-spel and
22#
發(fā)表于 2025-3-25 07:38:33 | 只看該作者
23#
發(fā)表于 2025-3-25 13:30:36 | 只看該作者
24#
發(fā)表于 2025-3-25 16:50:57 | 只看該作者
2296-5009 uation coefficient in slices through the body. (Since different tissue types attenuate X-rays differently, such maps provide a good visualization of what is in 978-1-4612-8669-1978-1-4612-4136-2Series ISSN 2296-5009 Series E-ISSN 2296-5017
25#
發(fā)表于 2025-3-25 20:52:22 | 只看該作者
Digital Spaces,in digital geometry. We need a framework appropriate for a mathematical treatment of the intuitive notion of a “surface with a connected inside and a connected outside” (a “Jordan surface”) in the discrete multidimensional environment.
26#
發(fā)表于 2025-3-26 02:12:35 | 只看該作者
Verschiedene Entwicklungen reeller Zahlen,After our brief excursion into matters which had to do with topology in the classical sense, we return to our main topic: the geometry of digital spaces. In fact, this is not quite correct; we return to digital spaces, but what we do with them in this chapter may be considered a departure from “geometry.”
27#
發(fā)表于 2025-3-26 04:45:05 | 只看該作者
Binary Pictures,After our brief excursion into matters which had to do with topology in the classical sense, we return to our main topic: the geometry of digital spaces. In fact, this is not quite correct; we return to digital spaces, but what we do with them in this chapter may be considered a departure from “geometry.”
28#
發(fā)表于 2025-3-26 08:52:23 | 只看該作者
978-1-4612-8669-1Birkh?user Boston 1998
29#
發(fā)表于 2025-3-26 12:54:20 | 只看該作者
Geometry of Digital Spaces978-1-4612-4136-2Series ISSN 2296-5009 Series E-ISSN 2296-5017
30#
發(fā)表于 2025-3-26 20:42:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
封丘县| 宜君县| 永嘉县| 凤台县| 台东市| 利津县| 林口县| 洪泽县| 正镶白旗| 湘乡市| 闽清县| 民和| 宁强县| 九龙坡区| 永修县| 同心县| 庆云县| 庆云县| 清流县| 溆浦县| 离岛区| 竹北市| 阿鲁科尔沁旗| 云梦县| 宜兰市| 辉南县| 南丰县| 金阳县| 延吉市| 巫溪县| 商洛市| 聂拉木县| 溆浦县| 桐柏县| 泾源县| 青神县| 革吉县| 伊宁县| 文化| 雅江县| 微山县|