找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg Karpenkov Textbook 20131st edition Springer-Verlag Berlin Heidelberg 2013 algebraic irrationalities.

[復(fù)制鏈接]
樓主: odometer
11#
發(fā)表于 2025-3-23 10:06:54 | 只看該作者
,Die Statik des starren K?rpers,this important subject (the study of best approximations, badly approximable numbers, etc.). In this chapter we consider two geometric questions of approximations by continued fractions. First, we prove two classical results on best approximations of real numbers by rational numbers. Second, we desc
12#
發(fā)表于 2025-3-23 14:15:30 | 只看該作者
13#
發(fā)表于 2025-3-23 19:26:01 | 只看該作者
,Einführung in die Kinematik und Kinetik,is not a natural question within the theory of continued fractions. One can hardly imagine any law to write the continued fraction for the sum directly. The main obstacle here is that the summation of rational numbers does not have a geometric explanation in terms of the integer lattice. In this cha
14#
發(fā)表于 2025-3-24 01:04:14 | 只看該作者
15#
發(fā)表于 2025-3-24 05:55:13 | 只看該作者
,Gleichgewicht gestützter K?rper, integer invariants. Further, we use them to study the properties of multidimensional continued fractions. First, we introduce integer volumes of polytopes, integer distances, and integer angles. Then we express volumes of polytopes, integer distances, and integer angles in terms of integer volumes
16#
發(fā)表于 2025-3-24 07:20:50 | 只看該作者
17#
發(fā)表于 2025-3-24 10:51:01 | 只看該作者
18#
發(fā)表于 2025-3-24 16:24:59 | 只看該作者
19#
發(fā)表于 2025-3-24 20:37:00 | 只看該作者
Oleg KarpenkovNew approach to the geometry of numbers, very visual and algorithmic.Numerous illustrations and examples.Problems for each chapter.Includes supplementary material:
20#
發(fā)表于 2025-3-24 23:34:24 | 只看該作者
Springer-Verlag Berlin Heidelberg 2013
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 18:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
扎赉特旗| 遂川县| 应用必备| 永兴县| 扎鲁特旗| 施甸县| 徐汇区| 昌邑市| 原阳县| 保靖县| 临桂县| 甘泉县| 偃师市| 鄂温| 康保县| 四川省| 大田县| 苗栗市| 防城港市| 永和县| 陕西省| 蛟河市| 麦盖提县| 汝南县| 尼勒克县| 鹤岗市| 石渠县| 江城| 汾西县| 东至县| 晋宁县| 新河县| 宝应县| 湘乡市| 西充县| 会理县| 林甸县| 濮阳县| 仁怀市| 富平县| 仲巴县|