找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Continued Fractions; Oleg N. Karpenkov Textbook 2022Latest edition Springer-Verlag GmbH Germany, part of Springer Nature 2022

[復(fù)制鏈接]
樓主: 詞源法
41#
發(fā)表于 2025-3-28 18:08:11 | 只看該作者
42#
發(fā)表于 2025-3-28 18:48:27 | 只看該作者
43#
發(fā)表于 2025-3-29 00:58:48 | 只看該作者
44#
發(fā)表于 2025-3-29 04:37:37 | 只看該作者
Extended Integer Angles and Their SummationLet us start with the following question. Suppose that we have arbitrary numbers ., ., and . satisfying.
45#
發(fā)表于 2025-3-29 07:23:33 | 只看該作者
Integer Angles of Polygons and Global Relations for Toric SingularitiesIn Chap. . we proved a necessary and sufficient criterion for a triple of integer angles to be the angles of some integer triangle. In this chapter we prove the analogous statement for the integer angles of convex polygons. Further, we discuss an application of these two statements to the theory of complex projective toric surfaces.
46#
發(fā)表于 2025-3-29 11:30:08 | 只看該作者
https://doi.org/10.1007/978-3-0348-5874-8or infinite regular continued fractions. Further, we prove existence and uniqueness of continued fractions for a given number (odd and even continued fractions in the rational case). Finally, we discuss approximation properties of continued fractions. For more details on the classical theory of continued fractions we refer the reader to.
47#
發(fā)表于 2025-3-29 19:27:31 | 只看該作者
48#
發(fā)表于 2025-3-29 20:36:51 | 只看該作者
49#
發(fā)表于 2025-3-30 00:29:43 | 只看該作者
50#
發(fā)表于 2025-3-30 06:06:25 | 只看該作者
Classical Notions and Definitionsor infinite regular continued fractions. Further, we prove existence and uniqueness of continued fractions for a given number (odd and even continued fractions in the rational case). Finally, we discuss approximation properties of continued fractions. For more details on the classical theory of continued fractions we refer the reader to.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 16:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东海县| 高碑店市| 洞口县| 游戏| 双桥区| 许昌市| 石楼县| 墨竹工卡县| 融水| 封丘县| 抚松县| 武隆县| 泗洪县| 北碚区| 玉溪市| 和顺县| 遂平县| 阿拉尔市| 霍山县| 资阳市| 云林县| 沭阳县| 南安市| 任丘市| 苏尼特右旗| 温泉县| 锡林郭勒盟| 伊吾县| 阿拉善左旗| 长治市| 宿松县| 黄浦区| 洛南县| 昔阳县| 水富县| 孟村| 宜章县| 武隆县| 余姚市| 无棣县| 高平市|