找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Algebraic Curves; Volume II with a con Enrico Arbarello,Maurizio Cornalba,Phillip A. Grif Textbook 2011 Springer-Verlag Berlin

[復制鏈接]
樓主: 宣告無效
51#
發(fā)表于 2025-3-30 10:33:04 | 只看該作者
The moduli space of stable curves,construct . as an analytic space, and then we show that this analytic space has a natural structure of algebraic space. After a utilitarian introduction to orbifolds and stacks, in particular to Deligne–Mumford stacks, we then show that . is just a coarse reflection of a more fundamental object, the
52#
發(fā)表于 2025-3-30 13:46:38 | 只看該作者
Line bundles on moduli,t. We introduce several natural bundles on moduli, including the Hodge bundle and the point bundles, and the stack divisors corresponding to the codimension one components of the boundary. We then discuss the theory of the determinant of the cohomology, which is well suited to producing line bundles
53#
發(fā)表于 2025-3-30 17:20:24 | 只看該作者
54#
發(fā)表于 2025-3-30 23:31:41 | 只看該作者
55#
發(fā)表于 2025-3-31 00:56:33 | 只看該作者
Smooth Galois covers of moduli spaces,act, since varieties of this kind, even when singular, have a naturally defined intersection theory. We describe this quotient representation, starting from the case of smooth curves where the constructions are considerably more transparent from a geometrical point of view. Using the theory of admis
56#
發(fā)表于 2025-3-31 08:56:56 | 只看該作者
57#
發(fā)表于 2025-3-31 11:05:56 | 只看該作者
Cellular decomposition of moduli spaces, which we review in Sections 5 and 6. The cells of the decomposition are labelled by ribbon graphs, and the decomposition itself is equivariant under the action of the Teichmüller modular group. We then extend this decomposition to the bordification of Teichmüller space introduced in Chapter XV. By
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
庆云县| 安国市| 监利县| 泗阳县| 乳山市| 永吉县| 永兴县| 含山县| 商城县| 西林县| 涿鹿县| 莱州市| 郓城县| 安溪县| 景德镇市| 丹凤县| 宁河县| 广南县| 长沙县| 永年县| 凤翔县| 集安市| 贞丰县| 旌德县| 岫岩| 商城县| 东乡族自治县| 扶沟县| 台北县| 济宁市| 开原市| 镇安县| 江门市| 宜春市| 陕西省| 响水县| 旺苍县| 台中县| 高唐县| 新安县| 洛宁县|