找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry of Algebraic Curves; Volume I E. Arbarello,M. Cornalba,J. Harris Textbook 1985 Springer-Verlag New York 1985 Algebraic.Curves.Geom

[復制鏈接]
樓主: Opulent
21#
發(fā)表于 2025-3-25 07:02:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:23:10 | 只看該作者
23#
發(fā)表于 2025-3-25 12:21:20 | 只看該作者
The Basic Results of the Brill-Noether Theory,o describe how the projective realizations of a curve vary with its moduli, and what it means, from this point of view, to say that a curve is “general” or “special.” Accordingly, we would like to know, first of all, what linear series can we expect to find on a general curve and, secondly, what the
24#
發(fā)表于 2025-3-25 16:17:00 | 只看該作者
,The Geometric Theory of Riemann’s Theta Function, important cases of them were classically known and, in a sense, provided a motivation for the entire theory. What we have in mind here are the classical theorems concerning the geometry of ..(.), that is, the geometry of Riemann’s theta function. Of course, these results are more than mere exemplif
25#
發(fā)表于 2025-3-25 22:16:50 | 只看該作者
Enumerative Geometry of Curves,merative problems that arise in the theory of curves and linear systems. While this is in some sense a quantitative approach, qualitative results may also emerge. For example, the answer to the enumerative question: “How many ..’s does a curve . possess” (Theorem (4.4) in Chapter VII) implies the ex
26#
發(fā)表于 2025-3-26 02:40:34 | 只看該作者
27#
發(fā)表于 2025-3-26 05:23:24 | 只看該作者
28#
發(fā)表于 2025-3-26 12:30:08 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:52 | 只看該作者
30#
發(fā)表于 2025-3-26 17:28:19 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 04:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汝阳县| 喜德县| 永昌县| 敦煌市| 镇远县| 原阳县| 武平县| 台中市| 通州区| 溧水县| 师宗县| 疏附县| 山阳县| 丁青县| 汝阳县| 酒泉市| 左云县| 商洛市| 文安县| 德钦县| 资中县| 辉县市| 修武县| 富平县| 南昌县| 西和县| 平昌县| 平泉县| 淮滨县| 隆尧县| 衡山县| 平遥县| 舞钢市| 鹿邑县| 钟山县| 天峻县| 凤城市| 修武县| 邵武市| 永平县| 林甸县|