找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Topology of Manifolds; 10th China-Japan Con Akito Futaki,Reiko Miyaoka,Weiping Zhang Conference proceedings 2016 Springer Japa

[復(fù)制鏈接]
樓主: DART
11#
發(fā)表于 2025-3-23 13:11:37 | 只看該作者
12#
發(fā)表于 2025-3-23 15:32:46 | 只看該作者
13#
發(fā)表于 2025-3-23 19:35:26 | 只看該作者
14#
發(fā)表于 2025-3-23 22:27:11 | 只看該作者
,Applications of the Affine Structures on the Teichmüller Spaces,e. These results answer certain open questions in the subject. A general result about certain period map to be bi-holomorphic from the Hodge metric completion space of the Torelli space of Calabi–Yau type manifolds to their period domains is proved and applied to the cases of K3 surfaces, cubic fourfolds, and hyperk?hler manifolds.
15#
發(fā)表于 2025-3-24 03:35:43 | 只看該作者
Can One Hear the Shape of a Group?,Koji Fujiwara, Journal of Topology and Analysis, .(2), 345–359 (2015). This is a note from my talk on that paper and mainly discuss the connection between Riemannian geometry and group theory, and also some questions.
16#
發(fā)表于 2025-3-24 08:42:18 | 只看該作者
17#
發(fā)表于 2025-3-24 14:43:34 | 只看該作者
2194-1009 ofresearch in geometry and topology.Includes supplementary mSince the year 2000, we have witnessed several outstanding results in geometry that have solved long-standing problems such as the Poincaré conjecture, the Yau–Tian–Donaldson conjecture, and the Willmore conjecture. There are still many imp
18#
發(fā)表于 2025-3-24 18:08:06 | 只看該作者
,Fixieren und H?rten der Objekte,e. These results answer certain open questions in the subject. A general result about certain period map to be bi-holomorphic from the Hodge metric completion space of the Torelli space of Calabi–Yau type manifolds to their period domains is proved and applied to the cases of K3 surfaces, cubic fourfolds, and hyperk?hler manifolds.
19#
發(fā)表于 2025-3-24 19:40:12 | 只看該作者
20#
發(fā)表于 2025-3-25 02:06:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巩留县| 华安县| 长垣县| 枣庄市| 新密市| 石棉县| 随州市| 峨眉山市| 太谷县| 佛冈县| 那曲县| 中宁县| 葵青区| 疏附县| 北安市| 贵南县| 沁源县| 萍乡市| 大荔县| 龙里县| 丹寨县| 临沂市| 博湖县| 行唐县| 辉县市| 武定县| 罗江县| 曲沃县| 银川市| 大方县| 磐安县| 武清区| 深圳市| 扶风县| 惠州市| 子长县| 和政县| 南召县| 渭南市| 宾阳县| 烟台市|