找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics; Marco Pettini Book 2007 Springer-Verlag New York 2007 Dynamics.Ge

[復(fù)制鏈接]
查看: 25189|回復(fù): 47
樓主
發(fā)表于 2025-3-21 18:16:33 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics
編輯Marco Pettini
視頻videohttp://file.papertrans.cn/384/383783/383783.mp4
概述The subject of the book is very original and nothing similar has been written hitherto.Will be of interest to both mathematicians and physicists.Numerous illustrations throughout
叢書名稱Interdisciplinary Applied Mathematics
圖書封面Titlebook: Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics;  Marco Pettini Book 2007 Springer-Verlag New York 2007 Dynamics.Ge
描述Itisaspecialpleasureformetowritethisforewordforaremarkablebookbya remarkableauthor.MarcoPettiniisadeepthinker,whohasspentmanyyears probing the foundations of Hamiltonian chaos and statistical mechanics, in particular phase transitions, from the point of view of geometry and topology. Itisinparticularthequalityofmindoftheauthorandhisdeepphysical,as well as mathematical insights which make this book so special and inspiring. It is a “must” for those who want to venture into a new approach to old problems or want to use new tools for new problems. Although topology has penetrated a number of ?elds of physics, a broad participationoftopologyintheclari?cationandprogressoffundamentalpr- lems in the above-mentioned ?elds has been lacking. The new perspectives topology gives to the above-mentioned problems are bound to help in their clari?cation and to spread to other ?elds of science. The sparsity of geometric thinking and of its use to solve fundamental problems, when compared with purely analytical methods in physics, could be relieved and made highly productive using the material discussed in this book. It is unavoidable that the physicist reader may have then to learn some new mathema
出版日期Book 2007
關(guān)鍵詞Dynamics; Geometry; Hamiltonian; Pettini; dynamical systems; topology
版次1
doihttps://doi.org/10.1007/978-0-387-49957-4
isbn_softcover978-1-4419-2164-2
isbn_ebook978-0-387-49957-4Series ISSN 0939-6047 Series E-ISSN 2196-9973
issn_series 0939-6047
copyrightSpringer-Verlag New York 2007
The information of publication is updating

書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics影響因子(影響力)




書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics影響因子(影響力)學(xué)科排名




書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics網(wǎng)絡(luò)公開度




書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics被引頻次




書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics被引頻次學(xué)科排名




書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics年度引用




書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics年度引用學(xué)科排名




書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics讀者反饋




書目名稱Geometry and Topology in Hamiltonian Dynamics and Statistical Mechanics讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:12:33 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:33:43 | 只看該作者
地板
發(fā)表于 2025-3-22 06:20:24 | 只看該作者
5#
發(fā)表于 2025-3-22 12:47:23 | 只看該作者
6#
發(fā)表于 2025-3-22 14:43:59 | 只看該作者
7#
發(fā)表于 2025-3-22 19:18:33 | 只看該作者
8#
發(fā)表于 2025-3-22 23:13:31 | 只看該作者
Introduction,hase transitions. The mathematical concepts and methods used are borrowed from Riemannian geometry and from elementary differential topology, respectively. The new approach proposed also unveils deep connections between the two mentioned topics.
9#
發(fā)表于 2025-3-23 01:47:45 | 只看該作者
10#
發(fā)表于 2025-3-23 08:44:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 20:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
龙口市| 柏乡县| 青河县| 金川县| 昌吉市| 南木林县| 绥棱县| 左云县| 大厂| 玉门市| 周至县| 宜城市| 岳阳县| 翁牛特旗| 黄陵县| 濮阳市| 浦东新区| 密云县| 华蓥市| 方正县| 深水埗区| 北流市| 太仓市| 六枝特区| 兴山县| 盐边县| 襄垣县| 苏州市| 潜江市| 黄陵县| 云龙县| 安吉县| 鹤峰县| 桃源县| 广宁县| 深水埗区| 和硕县| 镶黄旗| 三亚市| 南昌市| 会同县|