找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Theoretical Physics; Joachim Debrus,Allen C. Hirshfeld Textbook 1991 Springer-Verlag Berlin Heidelberg 1991 Feldtheorie.Geome

[復制鏈接]
樓主: Body-Mass-Index
21#
發(fā)表于 2025-3-25 03:27:17 | 只看該作者
22#
發(fā)表于 2025-3-25 09:18:29 | 只看該作者
23#
發(fā)表于 2025-3-25 13:22:59 | 只看該作者
24#
發(fā)表于 2025-3-25 18:01:02 | 只看該作者
,Infinite Dimensional Algebras and (2+1)-Dimensional Field Theories: Yet Another View of gl(∞); Someang-Baxter algebras [1] constitute the relevant structure underlying (1+1)-dimensional integrable models; in addition, their relation to braid groups, the theory of knots and links, and the exchange algebras of (1+1)-dimensional conformal field theories [2] is by now well understood. Secondly, defor
25#
發(fā)表于 2025-3-25 20:01:15 | 只看該作者
26#
發(fā)表于 2025-3-26 03:28:02 | 只看該作者
27#
發(fā)表于 2025-3-26 05:22:38 | 只看該作者
All Solutions of the Wess-Zumino Consistency Conditions,ibe the main algebraic tools and theorems required for this complete classification. Our results answer the question whether in nonrenormalizable gauge theories there exist additional up-to-now unknown anomalies in the negative.
28#
發(fā)表于 2025-3-26 09:10:07 | 只看該作者
Modular Invariance, Causality and the ,-Theorem,- Vilkovisky method is used to construct the corresponding field theory, and its dimensional reduction by the Parisi-Sourlas mechanism is proven. We show that a certain element in the identity component of the .(., 2) subgroup of .(., 2∣2) induces the .-transformation in the physical subspace. We cl
29#
發(fā)表于 2025-3-26 13:19:08 | 只看該作者
Knots and Their Links with Biology and Physics, such discoveries was triggered in 1984 and is still rolling. It all started with a bridge between knot theory and the theory of von Neumann algebras: the Jones polynomials. Within one year biologists recognized the usefulness of these polynomials for the classification of the enzymes transforming o
30#
發(fā)表于 2025-3-26 18:39:25 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 17:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
西安市| 贵溪市| 黔南| 陈巴尔虎旗| 界首市| 溧阳市| 大同市| 乌鲁木齐市| 同江市| 灵川县| 淮阳县| 余庆县| 通城县| 衢州市| 九寨沟县| 乌恰县| 汶上县| 山东省| 师宗县| 分宜县| 卓尼县| 玉环县| 宁乡县| 屯门区| 阿城市| 普宁市| 海原县| 忻州市| 闽侯县| 罗定市| 桐城市| 远安县| 正宁县| 隆化县| 和林格尔县| 将乐县| 浦江县| 盘锦市| 绥棱县| 巨野县| 高台县|