找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Invariance in Stochastic Dynamics; Verona, Italy, March Stefania Ugolini,Marco Fuhrman,Barbara Rüdiger Conference proceedings

[復制鏈接]
樓主: 無感覺
21#
發(fā)表于 2025-3-25 05:57:00 | 只看該作者
22#
發(fā)表于 2025-3-25 08:22:35 | 只看該作者
https://doi.org/10.1007/978-3-322-94108-4 process ensuring that its mild solution is positive if the initial datum is positive. As an application, we discuss the positivity of forward rates in the Heath-Jarrow-Morton model via Musiela’s stochastic PDE.
23#
發(fā)表于 2025-3-25 12:34:38 | 只看該作者
24#
發(fā)表于 2025-3-25 18:52:22 | 只看該作者
,Asymptotic Expansion for a Black–Scholes Model with Small Noise Stochastic Jump-Diffusion Interest ar, we consider the case when the small perturbation is due to a general, but small, noise of Lévy type. Moreover, we provide explicit expressions for the involved expansion coefficients as well as accurate estimates on the remainders.
25#
發(fā)表于 2025-3-25 20:17:50 | 只看該作者
26#
發(fā)表于 2025-3-26 03:53:15 | 只看該作者
Rough Homogenisation with Fractional Dynamics,actional and non-strong-mixing noise and providing new examples. The emphasise of the review will be on the recently developed effective dynamic theory for two scale random systems with fractional noise: Stochastic Averaging and ‘Rough Diffusion Homogenisation Theory’. We also study the geometric models with perturbations to symmetries.
27#
發(fā)表于 2025-3-26 08:16:24 | 只看該作者
28#
發(fā)表于 2025-3-26 09:01:44 | 只看該作者
On the Positivity of Local Mild Solutions to Stochastic Evolution Equations, process ensuring that its mild solution is positive if the initial datum is positive. As an application, we discuss the positivity of forward rates in the Heath-Jarrow-Morton model via Musiela’s stochastic PDE.
29#
發(fā)表于 2025-3-26 14:57:37 | 只看該作者
30#
發(fā)表于 2025-3-26 19:14:59 | 只看該作者
https://doi.org/10.1007/978-3-030-87432-260HXX, 60H15, 34C15, 35B06, 37HXX; invariance and symmetry; dimensional stochastic differential equati
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
即墨市| 贺州市| 汉沽区| 德钦县| 南昌县| 辽阳县| 长垣县| 从化市| 洛川县| 宁阳县| 红桥区| 金湖县| 兴隆县| 高要市| 军事| 诸城市| 辽阳县| 通河县| 八宿县| 洛川县| 且末县| 定西市| 靖安县| 桃园市| 五大连池市| 小金县| 松滋市| 宣武区| 衡山县| 潞西市| 岳普湖县| 资源县| 海伦市| 岑溪市| 浮梁县| 沭阳县| 洱源县| 长寿区| 宁德市| 英山县| 龙口市|