找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometry and Analysis on Manifolds; Proceedings of the 2 Toshikazu Sunada Conference proceedings 1988 Springer-Verlag Berlin Heidelberg 198

[復(fù)制鏈接]
樓主: 重婚
11#
發(fā)表于 2025-3-23 10:47:24 | 只看該作者
12#
發(fā)表于 2025-3-23 16:44:33 | 只看該作者
Conference proceedings 1988s, especially spectral analysis on noncompact manifolds. Included in the present volume are expanded versions of most of the invited lectures. In these original research articles, the reader will find up-to date accounts of the subject.
13#
發(fā)表于 2025-3-23 18:11:54 | 只看該作者
14#
發(fā)表于 2025-3-24 00:12:34 | 只看該作者
https://doi.org/10.1007/BFb0083042Eigenvalue; calculus; curvature; differential equation; manifold; minimum
15#
發(fā)表于 2025-3-24 02:32:48 | 只看該作者
,Einige h?ufig angewandte Tragwerksysteme,he operator theory on graphs and operator theory on manifolds. This has lead to a complete solution of the original problem in dimension greater than 2. The case of Dimension 2 is still open, but the conjecture mentioned above is an aim to reach..Many other problems are left in connection to what ha
16#
發(fā)表于 2025-3-24 09:53:07 | 只看該作者
Wolfgang Weber,Rüdiger Kabst,Matthias Baum?(det .).) vanish if . is positive in the sense of Griffiths and .+.≥.+1, .≥.+.. The proof rests on the wellknown fact that every tensor power .. splits into irreducible representations of Gl(.), each component being canonically isomorphic to the direct image on . of a positive homogeneous line bund
17#
發(fā)表于 2025-3-24 11:31:49 | 只看該作者
Conference proceedings 1988s, especially spectral analysis on noncompact manifolds. Included in the present volume are expanded versions of most of the invited lectures. In these original research articles, the reader will find up-to date accounts of the subject.
18#
發(fā)表于 2025-3-24 15:19:18 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:01 | 只看該作者
20#
發(fā)表于 2025-3-25 01:06:51 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夏邑县| 信宜市| 云和县| 江阴市| 房山区| 玉山县| 抚宁县| 大竹县| 小金县| 丹凤县| 馆陶县| 石门县| 秭归县| 高阳县| 涿州市| 叙永县| 吉安县| 霍州市| 荥经县| 万全县| 库车县| 贵州省| 石门县| 稻城县| 宜兰县| 灵山县| 伽师县| 团风县| 西安市| 营口市| 准格尔旗| 呼玛县| 重庆市| 石狮市| 赫章县| 麻江县| 礼泉县| 康定县| 汝城县| 犍为县| 孟连|